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1) GDI engines, have high efficiency, are widely used in gasoline vehicles

2) However, primary particle and VOCs from GDI engines are one of the main
sources for fog and haze
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Research background

In-cylinder Particles in Tailpipe Atmospheric
soot Exhaust system  particle emission particles

Issues :

* In-cylinder soot, particles in exhaust systems., particles in tailpipes and
atmospheric particles are researched separately.

* Lack of research integrating “In-cylinder—exhaust gas—atmosphere”

* Lack of research on the mechanism and theory of soot and particle mode
evolution
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Issues of PM Evolution

1) In-cylinder soot formation, origin of particles and influence factors
2) Particle evolution in exhaust systems and key influence factors

3) Particle and gaseous emissions evolution mechanism at near-field of
exhaust tailpipe plume

4) Evolution of particles and engine-out gaseous emissions in atmosphere
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Physical evolution conditions

BIRMINGHAM
Soot formation Ash - Leaving exhaust | SOF nucleation On-road newly-
Process and oxidation condensation | tailpipe ¢ and growth form.ed aerosol.— |
—————————————— 2. ioooee—-——-____. abortion and aging .
.................. Chance to form i'.--------------. Most engine-oul dececeecceccceceaaas
solid nanoparticles :I : volatile : I
in high-ash- : | nanoparticles i |
Pressure 150bar particle condition E form here E

Temperature

Secondary
In-cylinder dry soot and I ” evolution in | PM/VOCs ! conversion of I I
I ash ., exhaust system y  emission and I gaseous emissions I !
L | JI diffusion I |~ in atmosphere .
R . e e e e e — — — — — d




/ UNIVERSITYOF
BIRMINGHAM

Rresearch Technology pathways

In exhaust and atmosphere conditions, how GDI soot and particle evolve

Connection of primary
and secondary particle

Science

Particle mode evolution
mechanism in-cylinder and

guestion

Gaseous component condensation,

model conversion and secondary particle formation
M mechanism at tailpipes and atmosphere
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In-cylinder soot formation
and influence factors of
GDI engines

Engine test bench and
optical diagnosis test
experimental research

Simulation research on
in-cylinder soot
formation/oxidation
and evolution

Particle evolution in
exhaust systems of GDI
engines
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experimental research

Simulation research on
particle formation and
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Particle and gas evolution
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of exhaust tailpipe plume
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To reveal the evolution mechanism and build the model
of primary and secondary particles of GDI vehicles
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PAHs formation mechanism at high pressure

« As back pressure increases, flame width becomes narrow and the lower boundary of soot area
moves to the outlet of fuel, PAH-LIF area shrinks

« As back pressure increases, tendency to form PAHs increases. The bigger molecule of PAHs, the
more influences from back pressure increase.

« At atmosphere pressure, in fuel-rich region, soot locates in the flame tip; with the increase of
back pressure, soot also generates in flame wings

« The influence of backpressure on soot is similar to that on PAHs. The formation of PAHs is
highly related to the formation of soot.

« Average soot volume fraction(£) has a relation with back pressure: f, = Cp™, the range of the
exponent is 1.07-2.20, depending on fuel components and equivalence ratios
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Factors influence the formation of soot
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« Flame distribution at stoichiometry —
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Particle evolution inside exhaust system
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Gas temperature changes dramatically in the exhaust pipe, where
coagulation, condensation may occurs, resulting in particle components,

morphology, mode variations.

Fuel tank Pump
—

NI Realtime
Driven modules

]+--=.

3] =

Throttle

Air

b
=}
fn ]
3

T
i
-3

--

Dynamometer

Hariba |
MEXA-

7100DEGR |

PC

@

PC

DMS500

Experimental
system

10



Mucleation mode PM concentration {patiem

Particle evolution inside exhaust system ] &3
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Particle evolution inside exhaust system
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Research method:
« Analyzed soot evolution in-cylinder or in tailpipes by TEM graph analysis.

- Developed two Matlab codes to analyze particle morphology based on Refs (
Yehliu, 2011; Toth, 2013). Method?2 has faster calculation speed (increase 50%) and
more data (increase 100%).
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interlayer spacing: average distance between adjacent stripes, reflecting particle maturity and oxidation activity 12



Particle evolution inside exhaust system
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Findings; interlayer spacing distribution  Average value of interlayer spacing
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Measurement at near-field of tailpipe plume

At tailpipe exit, exhaust smoke plume is formed; primary particle characters change
with air flow; secondary particles are formed from primary particles and gases

 Integrated experiments of full-process of
particle evolution

Outlet of tailpipe and near-field pollution
evolution research of GDI vehicles
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Measurement at near-field of tailpipe plume
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 Exhaust tailpipe near-field measurement
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Simulation of particles evolution ) &

In-cylinder particle formation model from Cambridge based on Monte-Carlo
method

» Based on multi-component chemical kinetics, simulate soot formation, number, size and mass
distribution; simulate GDI engine performance and emissions according to fuel components and
engine conditions

* The simulation results match the experimental measurement data very will
on particle number, size and mass distributions

Time-evolution of the particle size distribution in SRM simulation

1E+10
1E+09
x10" | 1E+08
1E+07
1E+06

1E+05

dN/dlogDp (fcm?)

dN/dlogN/Dp(1/cm®)

3]

N 1E+04 —— Experiment
1E+03 — Simulation

W |
. 1E+02
60

<o

80 1E+01

Particle diameter Dp (nm) ,02“'"‘*-7-, »'120 1C0?ank Angle (deg) i 1E+00 4 ' : :
w0 1 10 100 1000

Diameter (nm)




RE
BB

/ UNIVERSITYOF
BIRMINGHAM

« Develop in-house software for the simulation
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Simulation of particles evolution

Comparison of simulation and experimental results

Take testing data from P1 as simulation
input, and testing data from P2 are
compared with simulation output.

Findings:

« As time passes, (exhaust gas flow
downstream) , particle average size
increases, particle number decrease

« The simulation results match well with
the experimental data
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Formation potential of secondary particles
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Summary and Main Conclutions
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» The formation characteristics and precursors of soot for gasoline surrogates are
obtained in a high-pressure flame, and the influence of pressure on precursors
and soot formation is researched.

» The effects of GDI engine combustion parameters on the formation of soot in
the cylinder are investigated in detail.

» The influence of fuel properties on secondary particles was analyzed. It was
found that aromatics had an important influence on secondary particles, and
IVOC was considered to also have an effect on secondary particle formation.

» A research method for IVOC was introduced, and it was found that IVOC is the
components that contributes the most to secondary particles.

» Taking advantage of international cooperation, the Monte-Carlo method was
successfully introduced to establish the particle generation and evolution
model of GDI engine and verified by experiment data.

The theory of diesel particulate agglomeration was successfully used to
establish the evolution model of gasoline engine particulate matter.
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