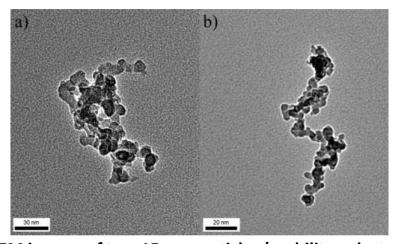
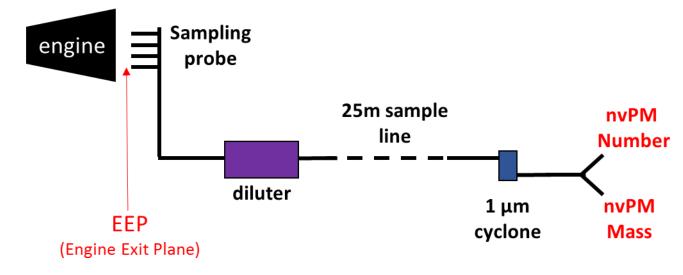


ASSESSMENT OF nvPM SYSTEM LOSS PREDICTION WITH SIZE MEASUREMENT TOWARDS AVIATION ENGINE REGULATION

Eliot Durand, Andrew Crayford, Mark Johnson



Context (1)


CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

- Aircraft gas turbines produce soot <200 nm
 - → Local air quality & potential environmental hazard
 - → Aircraft exhaust is a harsh environment = need for a sampling system
- ICAO has prescribed in 2017 a methodology for the reporting of aircraft non-volatile Particulate Matter (nvPM) emissions
 - → Towards mitigation of harmful emissions
 - → Reporting of nvPM number and mass Emission Indices (Els)
 - → nvPM size measurements not prescribed (traceability, morphology)

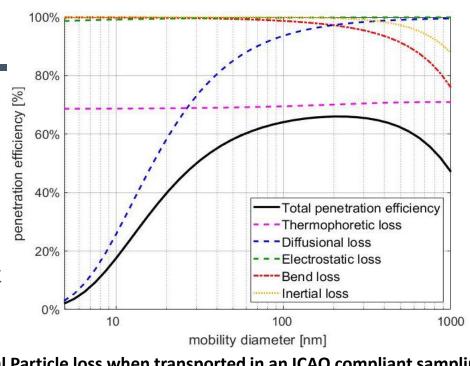
TEM images of two 15 nm particles (mobility-selected) emitted from an aircraft engine [Boies et al. 2015]

- ICAO compliant standardised sampling & measurement system:
 - ≤35 m (including collection section, Diluter, 25 m line & Analysers
 - Cools, dilutes and transports exhaust aerosol
 - → Significant particle loss not corrected in reported nvPM Els (except thermophoresis)

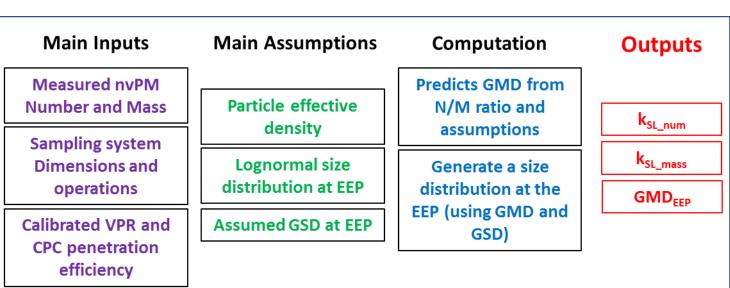
Simplified diagram of an ICAO compliant sampling system

Context (2)

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD


■ SAE E-31 system loss correction methodology:

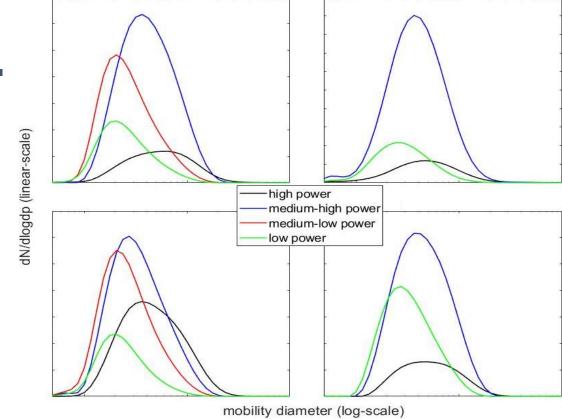
- Methodology referred as System Loss Tool (SLT)
- Accounts losses in sampling & measurement system
- → with SLT, Els can be reported at the Engine Exit Plane (EEP) for airport inventories
 - Challenge: size-dependent losses but no size measurement


■ How SLT works:

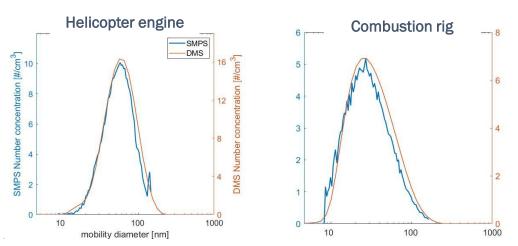
- Uses measured nvPM Number and Mass (N/M ratio) to predict a GMD
- > Requires assumptions to operate:
- Average particle effective density: 1 g/cm³
- Geometric Standard Deviation (GSD) at EEP: 1.8
- lognormality of particle size distribution at EEP

Are those assumptions accurate for all aircraft engines?

Typical Particle loss when transported in an ICAO compliant sampling system



Block Diagram of the SLT correction methodology


Background

Data presented and discussed:

- 4 engine types (7 engines) from Rolls-Royce (RR)
 - Different technologies & thrust levels representative of in-service engines
 - nvPM ICAO compliant system
 - Across all (LTO) engine powers (relative thrust 7-100%)
- Additional particle size measurement performed using a Cambustion DMS-500
 - Suitable for fast aerosol measurements at high powers
 - GMD 20-50 nm GSD 1.6 2.1
 - Monomodal but deviation from lognormality
 - GMD increases with power
- Comparison DMS-500 / SMPS
 - Good correlation for GMD & GSD (same shape)

Normalised size distributions of 4 engine types at different engine powers

Normalised DMS-500 and SMPS size distributions measured on various sources

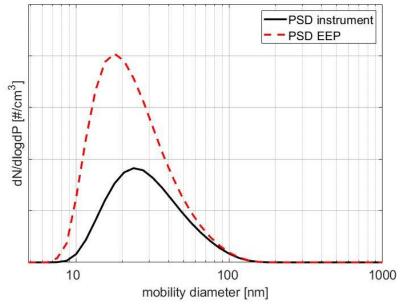
Loss corrected particle size distributions (PSD)

Additional particle size measurement used for:

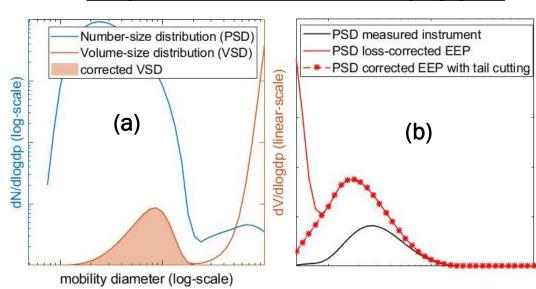
- Deriving an average particle effective density
- Deriving a GMD and GSD at the EEP

Measured-derived GMD compared with SLT GMD predictions

How PSD was corrected at EEP:


Penetration efficiency between instrument → EEP

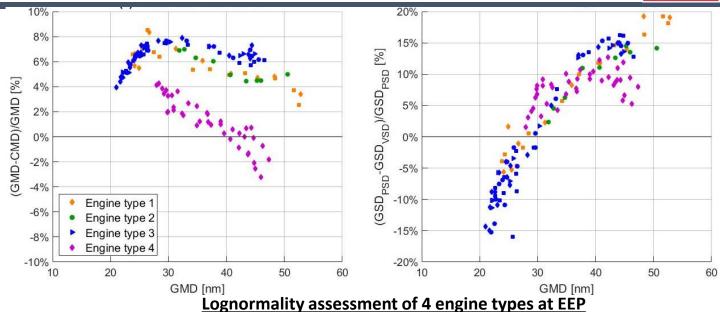
Accounting for <u>Diffusion</u>, thermophoresis, electrostatic, bend and inertial losses (UTRC model)

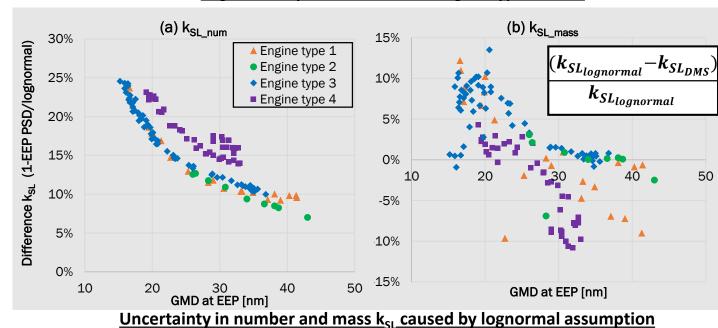

Size-dependent loss = higher concentrations & smaller
 GMD at the EEP

■ 'Tail-cutting' sometimes required to remove artefacts:

- (a) >200 nm for VSD (line shedding, DMS noise)
- (b) <10 nm (high correction factors at EEP)

Example PSD at different locations of sampling system


Example of PSD artefacts corrected with tail-cutting method


Assessment of lognormality at EEP

- Using measured-derived PSD at EEP
- 2 methods to assess lognormality:
 - CMD Vs. GMD (mean Vs. median)
 - ➢ GSD_{PSD} Vs. GSD_{VSD}
- Results PSD at EEP:
- Difference ≠ 0 → Generally not lognormal
- Lognormality engine type and GMD (i.e. thrust) dependent
- Impact of SLT lognormal assumption on k_{SL}:
- Difference ≠ 0 → Lognormal assumption overpredicts k_{SI} at low GMD
- Better agreement at larger GMDs (more lognormal, lower k_{SI})

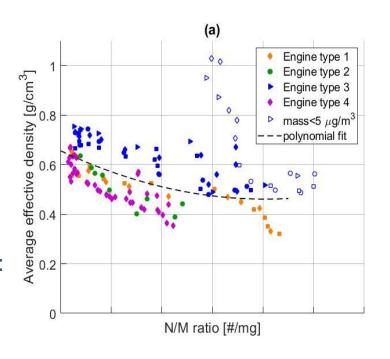
Lognormal assumption = uncertainty k_{SL} (up to 25%)

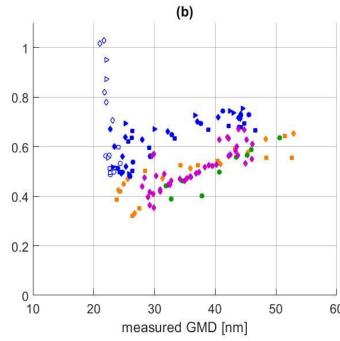
Average particle effective density

Density calculation:

- nvPM mass/Total volume
- Volume derived from DMS (number-weighted PSD → volume-weighted VSD)
- $V(d_p) = N(d_p) \times \frac{\pi d_p^3}{6}$

■ Average effective density ≠ size-dependent effective density

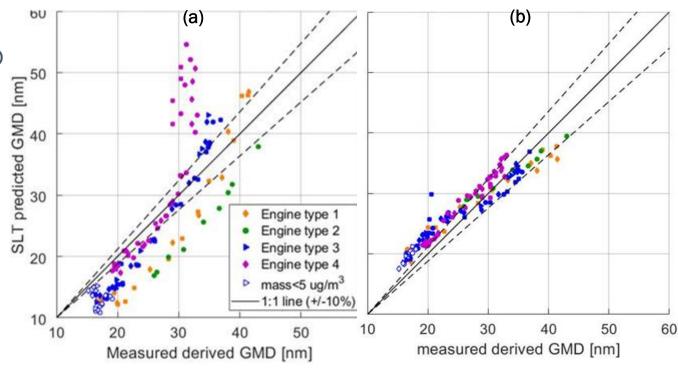

$$\rho_{eff}(avg) = \frac{nvPM \ Mass_{mi}}{total \ PM \ Volume_{PSD}}$$


- Results (average effective density):
- 0.3 0.8 g/cm³ (mean: 0.56 g/cm³)
- Density is engine type dependent
- Density decreases with increasing N/M ratio and decreasing GMD → density thrust dependent
- → Higher density with thrust (larger primary particle size)
- Other average densities reported in the literature:

Timko et al. 0.4-0.45 g/cm³ (PW308 – JP-8 only)

Durdina et al. \sim 1 g/cm³ (CFM56-7B26/3)

Beyersdorf et al. ~ 1.1 g/cm³ (CFM56-2C1)

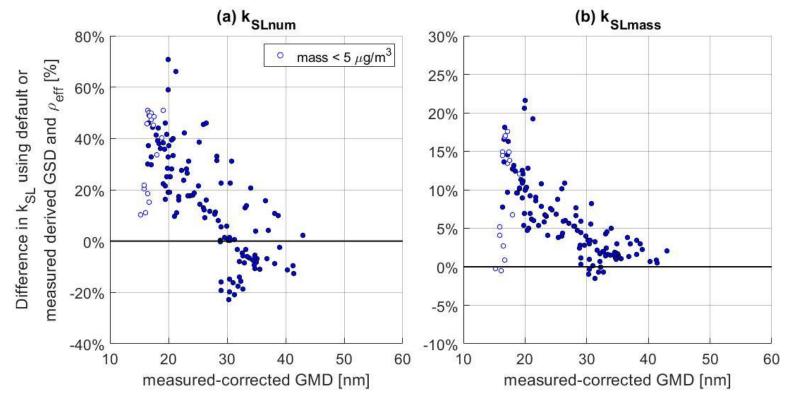


Average particle effective density against N/M ratio (a) and GMD (b)

Assessment of GSD and Density assumptions

- Density and GSD impact SLT GMD predictions
- Are there better assumptions for this data?
 - Comparing GMD SLT and measured-derived GMD
 - Comparison performed at EEP
- Results (GMD comparison):
- \triangleright (a) Using current GSD (1.8) and density (1 g/cm³):
 - Average GMD difference: <u>19.5%</u>
 - GMD difference appears engine specific
- → Uncertainty measured Number and Mass, variable density and GSD for 4 engine types
- (b) Using measured-derived GSD and density:
 - GSD from DMS, density from total volume and nvPM mass (previous slide)
 - Average GMD difference: 9.5% at EEP
 - SLT overpredicts GMD for GMD < 25 nm

Comparison between measured-derived GMD and SLT predicted GMD using default (a) or measured-derived (b) GSD and density assumptions


Additional particle size measurement

- = measured-derived GSD and density
 - = Better SLT GMD correlation

Uncertainty of loss correction estimation

- Effect of density and GSD assumptions on correction factors (k_{SL}) :
 - \rightarrow At EEP k_{SL_num} 1.8 5.5 / k_{SL_mass} 1.1 1.6 (4 engine types combined)
 - ightharpoonup Ratio $\frac{k_{SL_{default}}-k_{SL_{measured}}}{k_{SL_{measured}}}$ investigated (SLT using default assumptions Vs. measured-derived)
 - \triangleright Differences up to 71% for k_{SL_num} and up to 22% for k_{SL_mass} at EEP (worse at smaller GMDs)

SLT default assumptions (GSD:1.8 - ρ_{eff} =1g/cm³) generally underpredicting GMD hence overpredicting k_{SL}

= uncertainty k_{SL} (up to 71%)

<u>Difference in number (a) and mass (b) K_{SL} between default and measured-derived density and GSD assumptions at the EEP</u>

Conclusion

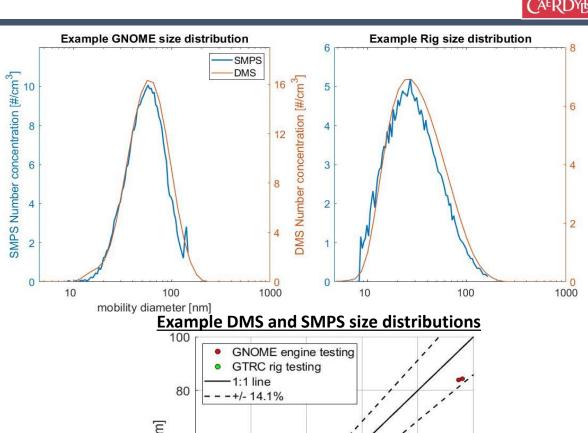
- New nvPM regulation implemented to mitigate emissions, but regulated Els not representative of EEP concentrations
- SLT can aid to predict Els at EEP for airport inventory, however requires lognormal, fixed GSD and constant density assumptions
- Particle size measurement removes requirement these three assumptions, improving sampling system loss correction factors

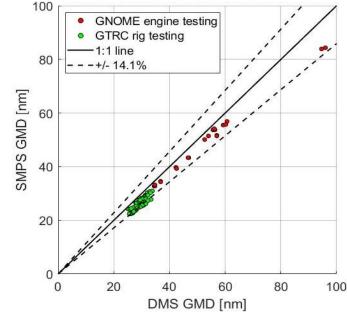
Main Results:

- Size distributions generally not perfectly lognormal at EEP
- 'Average' effective density $(\frac{mass}{volume})$ of 4 Rolls-Royce engine types: 0.3 0.8 g/cm³
- lacksquare SLT lognormal assumption at EEP: up to 25% added uncertainty on k_{SL}
- lacksquare SLT Density (1 g/cm³) and GSD (1.8) current assumptions: up to 71% added uncertainty on k_{SL}
- Size distributions may need 'tail-cutting' (left-tail PSD, right-tail VSD)

Thank you

Back up

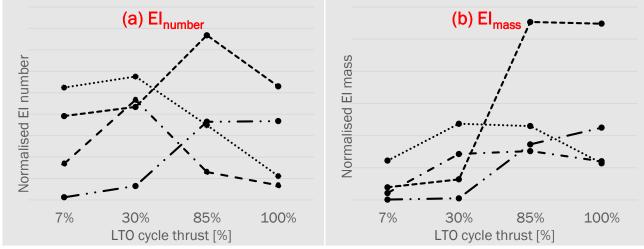



Comparison between DMS-500 and SMPS:

- Exhaust particles from GNOME engine and RQL rig (jet-A and alternative fuels)
 - GMD: 30 90 nm
 - o GSD: 1.4 1.8
 - $O N_{tot}$: 10⁵ 2.5x10⁶ #/cm³
- Size distribution measurements in parallel

Results:

- Similar shapes
- Good GMD and GSD agreement
 - \circ GMD_{DMS} > GMD_{SMPS} 3.3 \pm 1.7 nm
 - \circ GSD_{DMS} > GSD_{SMPS} 0.04 \pm 0.03
- $ightharpoonup N_{DMS} > N_{SMPS} (\approx 30\%)$

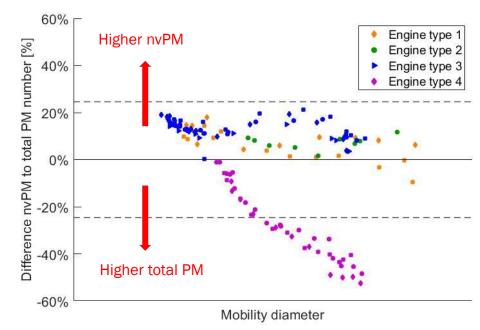


Difference between DMS and SMPS GMD

Back up

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

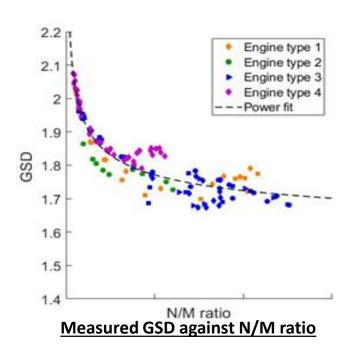
- 4 RR engine types
- nvPM Emission indices (Els):
 - Els vary over 2 orders of magnitude
 - Trends are engine type dependent

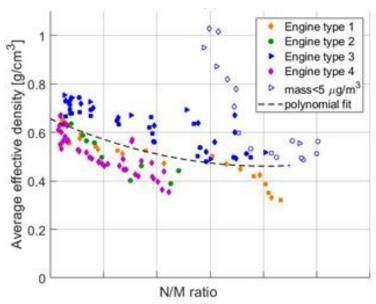


Normalised Els of 4 RR engine types

- nvPM Vs. total PM number:
 - DMS-500 and CPC loss corrected to a common point
 - Good correlation for engine type 1-3 (within uncertainty bands < 24.5%)
 - Engine type 4:

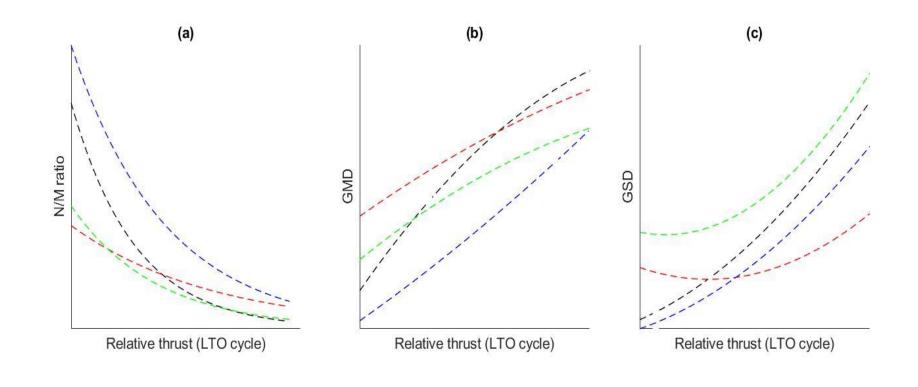
Repeatable increase in total PM with increasing GMD (i.e. thrust)


Different trend observed for Engine type 4


Difference between nvPM (CPC) and total PM (DMS) number concentration

Assessment of System Loss Tool (5)

$$GSD_{EEP}^{fit} = 2.1503 \times 10^6 \times \left(\frac{N_{meas}}{M_{meas}} \times 10^9\right)^{-0.5310} + 1.6014$$



Measured-derived density against N/M ratio

$$\rho_{eff}^{fit}(avg) = 1.19 \times 10^{-28} \times \left(\frac{N_{meas}}{M_{meas}} \times 10^{9}\right)^{2} - 9.66 \times 10^{-15} \times \left(\frac{N_{meas}}{M_{meas}} \times 10^{9}\right) + 0.656$$

Back up

