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Introduction
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 The research evidence reported by the European Particle Measurement
Programme (PMP) shows that, the measurement of PM emissions from gasoline
engines varies significantly during vehicle tests and its variation is several times
higher than those from diesel vehicles.

« Strict gasoline emission legislations imposed on light and heavy-duty vehicles have
been of prime consideration in automotive industry.

 Importance of investigating the evolution of particle formation and growth in both
engine cylinder and the exhaust system.
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Objectives
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To investigate soot formation in the cylinder of a Gasoline
Direct Injection (GDI) engine using modelling and experimental

approaches

To develop a combined mathematical model to investigate

surface growth and particulate trends along an exhaust pipe

To study particulate characteristics in the gasoline exhaust pipe,
Including particle evolution, particle inception, coagulation, and

volatile species condensation
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GDI Experimental Setup

Speed (r/min) 1500
Fuel ULG
Displacement Volume (cc) 500
Equivalence ratio 1
Injection pressure (MPa) 15
Spark timing (CABTDC) 25
IMEP (bar) 5.5
Injection timing(CA BTDC) 100-360
Upstream/
Downstream
Testing position exhaust
plenum
chamber
Corresponding exhaust
temperature (C deg) 6507300
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Model in-cylinder soot formation and morphology (fuel to
agglomerates) using SRM Engine Suite

« Stochastic Reaction Model (SRM Engine Suite): spatially zero-
dimensional, based on Probability Density Function (PDF)

* Detailed information on the soot morphology and bulk quantities
(number concentration, mass concentration, particle size distribution)

Simulate for internal
combustion engine performance
and exhaust emissions.

Model heat transfer, DI, Sl,
Soot formation inclusive of
chemical mechanisms.

Precise Particulate Matter (PM)
Estimation for variant fuels and
engine operating conditions




Particle Growth Model (PGM) Construction
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Particulate Matter modelling to investigate

» Nucleation and condensation of volatile species, coagulation and

particles deposition processes are considered and modelled.

(1) Nucleation model (CNT formulation, Becker-Doring et al., 1935)
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Where ‘i’ is the nucleating species; ¢ represents the mass fraction of each gaseous species;

pg is the gas density; p; is the liquid density of ‘i’ species; w; is the molecular weight;

o is the surface tension coefficient; kg is the Boltzmann constant; T is gas temperature;
m,, is the mass of the critical cluster; S is the vapor super saturation ratio (S = p/p*).
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(2) Condensation model (Kulmala et al., 1998)

. 4o
Rc = ZnDpj,BM,ijDi Ni - l—‘ijNieexP kBT ,p.ﬁ , Nj
pIF]=Dp]

Kn% + Kn;; + 0.283Kn;; + 0.75

Bum,ij = Fuchs-Sutugin expression

*  Where N;, is the equilibrium molecular concentration over a flat surface;
Bu,ij is the correction factors; Kn;; is the Knudsen number; D; is the i-vapor diffusion coefficient.

D,; is the mean diameter of each particle zone; I is the activity coefficients.

(3) Deposition model (Williams and Loyalka, 1991)

Rel/4 q

1/2
0.0791) /3D
d

k = 0.042Re<

« Where Re is the Reynolds number for the conditions in the exhaust pipe;
« Sc is the Schmidt number; D is the pipe diameter; d is the mean droplet diameter.
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Particle Growth Model (PGM) Construction &

(4) Coagulation model (Fuchs interpolation formula, Seinfeld, 1986)
The rate of change of particle concentration

dN

1
- = __ 2
dt 2ﬁ(”1;772)1v

* Where g the collision frequency by Fuchs interpolation formula:

-1

dp, +dp, . 8(D; + D;)
dpi + dpj + Zgl] Cij (dpi + dpj)

/ gij = /g? + g7

3/2
gi = 3d A [(dpl + ’1191) (d129i + ’112%) ] — dp

B =2m (d +d, )(D + Dj)

8kyT : 8D;
sl Particle mean free path: 4,, = —

mm; e

Particle velocity:

kp 22,, Asdy,
Particle diffusivity: Di = 37Tud Cei = 3nud, 1+d_pi Ay + Azexp | — ™



Particle Growth Model (PGM) Setup
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« Calculation procedure of the PM evolution in the exhaust pipe:
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GDI Experiment Results

dN/dlogDp (part/cm”3)
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Late injection(under-mixing) or too early
injection(pool fire) result in high accumulation
PN emissions.

The nuclei PN decreases downstream the
exhaust plenum chamber both late or too early
Injection.

PN increases downstream for middle injection
(130-315 CAD BTDC).
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Nuclei PN concentration (N/cc)

Injection pressure 100 bar

2.0x10°
1.8x10° i
1.6x10° i
1.4x10° i
1.2x10° i
1.0x10° -

8.0x10° -

100 110 120

—

I Upstream

I Downstream

130 140 150 180 240 300 315 360

Injection timing (CAD BTDC)

« When accumulation PN concentration is higher than 2.5x107/cc, nuclei PN
concentration downstream is lower than that upstream.
« This indicates nuclei PM is absorbed by accumulation PM along the
exhaust system.
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Injection pressure 100 bar
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« THC emission has high relevance with accumulation PN.
« The newly-formed PM along the exhaust system may come from the
condensation of hydrocarbon.
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» To compare with experimental results, FPM simulation starts at the position near the
exhaust valve and ends at the position 0.5 m downstream along the pipe.
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» PM Evolutions inside the exhaust pipe (3.0 m length)
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 Late injection (under-mixing) or too early injection (pool fire) result in high
accumulation PN emissions. Nuclei PM is absorbed by accumulation PM along the

exhaust system.

« THC emission has high relevance with downstream accumulation PN. THC emission
has high relevance with accumulation PN. The newly-formed PM along the exhaust

system may come from the condensation of hydrocarbon.

* The SRM and PGM simulations show precise PM results based on variant boundary
conditions and experimental results. The next stage of research is to use these models
to investigate the impact of injection timing on soot formation and PM characteristics
and investigate variant fuel performance for gas and particulate emissions for in-

cylinder and exhaust pipe.
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