

Characterization of dimers of soot and non-soot particles formed by charged coagulation

Boston College and Aerodyne

Leonid Nichman, Paola Massoli, Yue Zhang, Tim Onasch, Doug Worsnop, Paul Davidovits

MTU Janarjan Bhandari, Claudio Mazzoleni

Cambridge particle meeting 2018

Here Soot = Black Carbon (BC)

Focus of experiments in our lab

- 1. Ice nucleation on BC particles under cirrus cloud conditions
- Optical properties (i.e., absorption) of BC containing particles
- Internal and external mixtures of BC containing particles

Absorption enhancement (lensing)

Dioctyl sebecate (DOS) coated absorbing PSL particles well characterized by core-shell Mie theory

Non-soot material on soot particles increase optical cross sections

coating

soot

light

Discrepancy between ambient/source and core-shell results

• Gap between well-characterized laboratory and field (ambient and biomass burning) measurements, either due to particle variability or population mixing

Particle morphology versus population mixing

Liu et al., 2015 - Mich. Tech. Univ.

- Core-Shell structure has an increased optical cross section which enhances the absorption of light
- Core-shell is the most common representation in models
- Other types of internal and external mixtures are prevalent in the atmosphere
- What are the relative effects of morphology versus population mixing?

Objective – study coagulated BC particle types

- Bare soot, thinly coated and thickly coated were extensively studied in previous campaigns
- Data is scarce for the dimer structure of coagulated particles (complex experiments)

Known challenges...

- 1. Coagulation slow process
- 2. Low number concentrations of dimers generated, near detection limit of optical measurements

Characteristic times of bipolar coagulation

Total concentration Tau		
1e4	52h	
1e5	5.5h	
1e6	30min	
1e7	3min	

Kim et al. 2005

Petters & Rothfuss (2016)

Charge-enhanced coagulation Process steps

- 1. Generation of two **polydispersed** particle distributions
- 2. Size select monodisperse particle distributions with opposite charges
- 3. Neutralization of the charge by **Coagulation**
- 4. Removal of all remaining charged particles i.e. separation of the dimer
- **5. Recharging** the neutral particles to detect the neutral dimer with a CPMA (Centrifugal Particle Mass Analyser, Cambustion Ltd.)
- 6. Measuring **optical properties** of dimer particles!

Cambridge particle meeting 2018

9

Experimental plan

- DOS-DOS (liquid-liquid) experiments
 - Optimize experiments
 - Assess methodologies
- DOS-Soot experiments over "Region of Interest" in NR-PM/BC ratio and E_{abs} space
- Study more interesting mixtures, including ammonium sulfate-soot and secondary organic aerosol (SOA)-soot

NR-PM/BC mass ratio

Identification of mass-distribution peaks

(re-neutralized positive monodispersed particles)

Mixing time

DOS-DOS	0 min	11 min	3.5 h
C _{dimer} C _{monomer}	0.05 %	2.6 %	3 %

(for identical conditions)

	DOS-DOS	Soot-DOS	Soot-A.S
$\frac{C_{dimer}}{C_{monomer}}$	4 %	6 %	3.5%

DOS-DOS liquid coalescence – optimized conditions

• Preliminary experiments show a clear peak for coalesced negatively charged 0.9 fg DOS with positively charged 1.2 fg DOS particles at a mass of 2.15 fg

Soot-DOS coagulation

Cambridge particle meeting 2018

Clear coagulated

Optical detection (DOS-Soot) using CAPS PMssa

- During baseline measurements, CAPS signal is zero
- 20% Absorption enhancement (Eabs) was calculated for the dimer
- Single Scattering Albedo is higher than for pure soot and lower than for pure DOS

Preliminary results

• Most data follow Mie theory with some exceptions

- SSA of coagulated dimers are similar ot higher than pure soot particles, as expected
- MAC of coagulated dimers and pure soot particles are similar but in some cases are higher, which was unexpected
- Observation: DOS likely "wetting" soot particles on experimental time-frame

Summary

- Rarely studied coagulation of monomers was achieved and reproduced in a laboratory setup
- The process was optimized to allow shorter coagulation time
- Several types of monomers were coagulated (DOS-DOS, Soot-DOS, Soot-A.S, Soot-A.N, Soot-SOA)
- The process was optimized to allow optical detection (CAPS-PMssa, SP2)
- Preliminary results of Eabs, MAC and SSA for uniform distribution of Soot-DOS dimers are reported

Future work

- Higher Rbc ratios
- viscous aerosols (e.g. SOA) to reduce core shell structures
- Include coagulated dimers into population mixing studies
- Study humidity influence on coagulation efficiency

Questions?

- Acknowledgements ~

This work is supported by DOE award #DE-SC0011935, NSF award #1506768, the Boston College Undergraduate Research fund and the Boston College Postdoctoral Association Knowledge Dissemination Program

Prof. Paul Davidovits paul.davidovits@bc.edu 617-552-3617

onasch@aerodyne.com

Dr. Yue Zhang Postdoctoral Researcher

Postdoctoral Researcher

Undergraduate student College of Arts & Sciences, Class of 2019 Major: Biochemistry Minor: History Birthplace: Seoul, South Korea From: Millord, MA Hobbles: Exercise, Cooking, Playing music, Reading, Traveling junglebc.edu

Peyton Spencer,

Undergraduate student Maritisey Callege of Arts and Sciences, Class of 2018 Major: Chemistry Minor: French From: Commerce, MI Hobbies/Clubs: Playing guitar, travelling, Boston College Hillet, Boston College Music Guild, Boston College Jammin' Toast spencepbebc.edu

ROGEN NITROGEN M

Brian Heffernan Morrissey College of Arts and Sciences, Class of 2019 Major: Chemistry Minor: Chinese From: Lancaster, MA Hobbles: WZBC radio DJ, reading, bicycling

Cambridge particle meeting 2018

Extra Slides

Inverted Burner Soot Generator

Argonaut Scientific Corporation 11119 – 50th Ave, Edmonton, Alberta, Canada

(SP2)

Soot Photometer

- Organics scatter light, black carbon incandesce
- Determination of soot core mass for coated particles by temporal separation between scattering and incandescence signals

Onasch et al., 2012

$\textbf{CAPS PM}_{ssa} \textbf{ Monitor}$

Scattering and Extinction

- Extinction Cavity Attenuated Phase Shift Technique
- Scattering Inverse Integrating Nephelometer Integrating Sphere with Lambertian Surface Minimal Bias w.r.t. Scattering Angle

Aerosol Sci. and Technol. 49:267-272 (2015)

Ammonium sulphate + soot dimers SEM sample collection

Dioctyl sebacate oil

