

Characterization of dimers of soot and non-soot particles formed by charged coagulation

Boston College and Aerodyne
Leonid Nichman, Paola Massoli, Yue Zhang, Tim Onasch, Doug Worsnop, Paul Davidovits
MTU
Janarjan Bhandari, Claudio Mazzoleni

Here Soot = Black Carbon (BC)

Focus of experiments in our lab

1. Ice nucleation on $B C$ particles under cirrus cloud conditions

2. Optical properties (i.e., absorption) of BC containing particles

- Internal and external mixtures of BC containing particles

Absorption enhancement (lensing)

Dioctyl sebecate (DOS) coated absorbing PSL particles well characterized by core-shell Mie theory

Non-soot material on soot particles increase optical cross sections

Discrepancy between ambient/source and core-shell results

Biomass burning source

- Gap between well-characterized laboratory and field (ambient and biomass burning) measurements, either due to particle variability or population mixing

Particle morphology versus population mixing

Liu et al., 2015 - Mich. Tech. Univ.

- Core-Shell structure has an increased optical cross section which enhances the absorption of light
- Core-shell is the most common representation in models
- Other types of internal and external mixtures are prevalent in the atmosphere
- What are the relative effects of morphology versus population mixing?

Objective - study coagulated BC particle types

Refractive Org

dimer

Compact soot agglomerate

- Bare soot, thinly coated and thickly coated were extensively studied in previous campaigns
- Data is scarce for the dimer structure of coagulated particles (complex experiments)

Characteristic times of bipolar coagulation

Known challenges...

1. Coagulation - slow process

l Total concentration	Tau
1 e 4	52 h
1 e 5	5.5 h
1 e 6	30 min
1 e 7	3 min

Kim et al. 2005

Petters \& Rothfuss (2016)

Charge-enhanced coagulation Process steps

1. Generation of two polydispersed particle distributions
2. Size select monodisperse particle distributions with opposite charges
3. Neutralization of the charge by Coagulation
4. Removal of all remaining charged particles i.e. separation of the dimer
5. Recharging the neutral particles to detect the neutral dimer with a CPMA (Centrifugal Particle Mass Analyser, Cambustion Ltd.)
6. Measuring optical properties of dimer particles!

Experimental plan

- DOS-DOS (liquid-liquid) experiments
- Optimize experiments
- Assess methodologies
- DOS-Soot experiments over "Region of Interest" in NR-PM/BC ratio and $\mathrm{E}_{\text {abs }}$ space
- Study more interesting mixtures, including ammonium sulfate-soot and secondary organic aerosol (SOA)-soot

NR-PM/BC mass ratio

Identification of mass-distribution peaks

(re-neutralized positive monodispersed particles)

Mixing time

DOS-DOS	0 min	11 min	3.5 h
$\frac{C_{\text {dimer }}}{C_{\text {monomer }}}$	0.05%	2.6%	3%

(for identical conditions)

	DOS-DOS	Soot-DOS	Soot-A.S
$\frac{C_{\text {dimer }}}{C_{\text {monomer }}}$	4%	6%	3.5%

DOS-DOS liquid coalescence - optimized conditions

- Preliminary experiments show a clear peak for coalesced negatively charged 0.9 fg DOS with positively charged 1.2 fg DOS particles at a mass of 2.15 fg

Soot-DOS coagulation

1
0.1

- Clear coagulated (doubled) neutral mass observed!
\rightarrow Negative neutral DOS 2.5 fg
\rightarrow-Positive neutral Soot 2 fg
--coag DOS+Soot

Optical detection (DOS-Soot) using CAPS PMssa

- During baseline measurements, CAPS signal is zero
- 20% Absorption enhancement (Eabs) was calculated for the dimer
- Single Scattering Albedo is higher than for pure soot and lower than for pure DOS

Preliminary results

- Most data follow Mie theory with some exceptions

- SSA of coagulated dimers are similar ot higher than pure soot particles, as expected
- MAC of coagulated dimers and pure soot particles are similar but in some cases are higher, which was unexpected
- Observation: DOS likely "wetting" soot particles on experimental time-frame

Summary

- Rarely studied coagulation of monomers was achieved and reproduced in a laboratory setup
- The process was optimized to allow shorter coagulation time
- Several types of monomers were coagulated (DOS-DOS, Soot-DOS, SootA.S, Soot-A.N, Soot-SOA)
- The process was optimized to allow optical detection (CAPS-PMssa, SP2)
- Preliminary results of Eabs, MAC and SSA for uniform distribution of Soot-DOS dimers are reported

Future work

- Higher Rbc ratios
- viscous aerosols (e.g. SOA) to reduce core shell structures
- Include coagulated dimers into population mixing studies
- Study humidity influence on coagulation efficiency

Questions?

Acknowledgements

This work is supported by DOE award \#DE-SC0011935, NSF award \#1506768, the Boston College Undergraduate Research fund and the Boston College Postdoctoral Association Knowledge Dissemination Program

Extra Slides

Inverted Burner Soot Generator

Argonaut Scientific Corporation 11119 - 50th Ave, Edmonton, Alberta, Canada

Soot Photometer (SP2)

- Organics scatter light, black carbon incandesce
- Determination of soot core mass for coated particles by temporal separation between scattering and incandescence signals

Onasch et al., 2012

CAPS PM ${ }_{\text {ssa }}$ Monitor

Scattering and Extinction

- Extinction - Cavity Attenuated Phase Shift Technique
- Scattering - Inverse Integrating Nephelometer Integrating Sphere with Lambertian Surface Minimal Bias w.r.t. Scattering Angle

Aerosol Sci. and Technol. 49:267-272 (2015)

Ammonium sulphate + soot dimers

SEM sample collection

Dioctyl sebacate oil

