Modelling Particle Mass and Particle Number Emissions during the Active Regeneration of Diesel Particulate Filters

<u>Chung Ting Lao</u>, Jethro Akroyd, Nickolas Eaves, Markus Kraft

Amit Bhave

Alastair Smith, Neal Morgan

Background

Particulate emissions

- Particle Mass (PM)
- Particle Number (PN)

Real Driving Emissions

Heavy duty vehicles

- Compression Ignition
- Diesel Particulate Filters (DPFs)
- Active regeneration

Active regeneration releases particles

Image adapted from Cauda et al., Topics in Catalysis, Vol 42-43 (2007), p253-257

Studies on particulate emissions during regeneration are predominantly experimental

Particulate emissions measurements rarely compared with model predictions

Develop model to investigate particulate emissions during regeneration

Exhaust after-treatment

Post-cylinder emission control

Filtration – Regeneration

Diesel Particulate Filter (DPF)

Could have catalytic coating

Sources of emission during regeneration

2. Yoon et al., Atmospheric Environment 122 (2015) 58-64.

GROU

3. Guan et al., Journal of Environmental Management 154 (2015) 225-258.

4. Beatrice et al., Experimental Thermal and Fluid Science 39 (2012) 45-53.

Modelling approach

Pair of representative channels

- Pressure drop
- Regeneration
- Phenomenological filtration

Yang et al., Advances in Mechanical Engineering 8 (3) (2016) 1–14.

Phenomenological Filtration

Unit collector model describes filtration in porous wall

Model development: Filter unloading

Mass of Cake

Experiment of Choi et al., Energy 77 (2014) 327-337

Model development: Temperature dependence

- Porosity ϵ
- Wall thickness t_w
- Microstructure
 - Pore diameter d_{pore}

Unit collector model modified to capture temperature dependence

$$d_{\text{pore}} = \beta (T - T_{\text{ref}}) + d_{\text{ref}}$$

Heat up due to regeneration

Experimental setup

10.5L Diesel engine SiC DPF, no catalyst

Steady engine operation throughout Inject fuel upstream of DOC to start regeneration

Particle loading

Chung Ting Lao ctl34@cam.ac.uk

Regeneration temperature

Regeneration filtration efficiency

13

Summary

Compared model predicted filtration efficiencies with regeneration experiment

Additional filtration sub-models improved description of experiment

Continue to test other hypotheses on particle breakthrough and further develop model

Acknowledgements

Engineering and Physical Sciences Research Council

