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Origin of using trimodal lognormal
distribution to describe engine aerosols
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Early submicron roadside measurements
showed bimodal distribution
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Fig. 7. Plot of the surface size distributions, AS/Alog D, for Run 54 when the wind was from the
freeway, Run 55 when the wind was blowing toward the freeway, and the difference distribution,

Run 54 minus Run 55 for D, less than 0.15 jum.

From: Characterization of California Aerosols-I. Size Distributions Of Freeway

Aerosol, K. T.Whitby, W. E. Clark.,V. A. Marple, G. M. Sverdrup, G. J. Sem, K.
Willeke, B. Y. H. LIU And D. Y. H. Pui, Atmospheric Environment Vol. 9. pp. 463-
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Atmospheric aerosols exhibit trimodal size
distribution linked to formation processes

Sources, Buildup and Removal Processes of Atmospheric Aerosol
(Whitby and Cantrell, 1976)
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Diesel exhaust size distributions also typically
trimodal, modes linked to formation processes
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Kittelson, D.B. 1998. “Engines and Nanoparticles: A Review,” J.
Aerosol Sci., Vol. 29, No. 5/6, pp. 575-588, 1998
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Many on-road measurements
show clear modal structure
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Kittelson, D. B., W. F. Watts, and J. P. Johnson 2006. “On-road and Laboratory

Evaluation of Combustion Aerosols Part 1: Summary of Diesel Engine Results,”
Journal of Aerosol Science 37 (2006) 913-930.

G. Oberdorster, R. M. Gelein, A. C. Elder, and P. K. Hopke, 2004. “On-
Road Exposure to Highway Aerosols: 1. Aerosol and Gas Measurements,”
Inhalation Toxicology, 16(suppl. 1):31-39
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Interpreting modal structure

« Each mode suggests a distinct formation
mechanism

— Nucleation mode

* Nucleation of semi-volatile during exhaust dilution and
cooling

* Ash nucleation during expansion stroke
* Nascent soot

» All of these are suppressed by existing particles in
accumulation mode

— Accumulation or soot mode
* Formed on burning fuel jet early in engine cycle
* Fractal like structure

* May be masked by semi-volatile material (nucleation mode)
In low soot engines/fuel

— Coarse mode — not considered here
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Masking modal structure

 Multi-source ambient aerosols may lead
mixtures with many modes

 Average size distributions in transient
cycle with modes moving around

* Removal or partial removal of semi-volatile
material during sampling

* Low soot engines may produce mainly
nucleation mode

 High soot engines may produce mainly
accumulation mode
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Example: Diesel exhaust size distributions
with and without catalyzed exhaust filter

 Test were run using AVL steady state test modes designed to

simulate the U.S. heavy-duty transient test — 6 of the 8 AVL
modes were run — operating modes, not size modes

— Mode 1: 700 RPM, 0 ft-Ibf (Idle)

— Mode 2: 821 RPM, 211 ft-Ibf (286 Nm)

— Mode 5: 1800 RPM, 195 ft-Ibf (264 Nm)

— Mode 6: 1745 RPM, 445 ft-Ibf (603 Nm)

— Mode 7: 1745 RPM, 767 ft-Ibf (1040 Nm)

— Mode 8: 1800 RPM, 1024 ft-Ibf (1388 Nm)

« SMPS measurements were made with a catalytic stripper that
allows solid volatiles to be differentiated
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1000

Lab studies with and
without filtration

Modes 5 and 6 give essentially
unimodal distributions without
filtration — large accumulation
mode suppressed nucleation

With filtration the concentrations
are 3 to 5 orders of magnitude
lower and near the noise floor of
the measurement
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1000

Lab studies with and

without filtration

Modes 7 and 8 give unimodal
distributions without filtration

Both of these modes form a
nucleation mode downstream of
the catalyzed exhaust filtration
system with concentrations 1 to
2 orders of magnitude higher
than without

In the accumulation mode range
the exhaust filtration system
reduces concentrations by 3to 5
orders of magnitude

It appears that most of the
material in the nucleation mode
IS sulfate
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Are spark ignition engines
different from diesel?
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Port fuel injected Sl engine - influence of
additives — size modes?
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Figure 3. Representative Baseline Size Distributions for the OX13391 and
OX13003 Additives [2500 RPM, 90 kPal
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On-road and lab experiments — Diesel and PFlI
gasoline size distributions
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* During highway cruise PFI emissions are significantly lower than Diesel
 PFI emissions are much more load dependent than Diesel
* Modal structure less obvious with PFI

Johnson, Jason P., David B. Kittelson, Winthrop F. Watts, 2005. “Source Apportionment of Diesel and Spark Ignition Exhaust Aerosol Using On-
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Particles from PFI engines highest for
cold start, hard acceleration, fuel rich

Hard acceleration
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FIGURE 3. Comparison of size-resolved particle emissions from a gasoline light-duty truck (T5) during the cold stant (phase 1) versus the
hot start (phase 3) of the FTP. Note the change in vertical scale from phase 1 to phase 3. Vehicle speed is shown by the traces along

the rear walls of the plots.
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GDI car, PN sensitive to fuel composition,
diesel like size distributions, clear modes
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Highest numbers from GDI also cold start, high
load but doesn’t drop off as much, modes unclear
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Figure 2. The PSD for phases 1 and 2 of the FTP cycle. The drive trace is Figure 3. The PSD for phase 3 of the FTP cycle. The drive trace is included
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Recent U of M work: Particle emissions
from lean and stoichiometric burn GDI

m Engine and instrumentation schematic showing
dilution system and instruments used in the

BMW N43B20, four-cylinder, 2.0 L, naturally aspirated engine experimental study.

e s @ b ——= Excessflow
TABLE 1 Engine specifications A
~12:1 40:1 300 °C
Model Number N43B20
Displacement (cc) 1995 N :IEP o == [~ e
Bore x Stroke (mm) 84 x 90 Eu cs
4

Compression Ratio 121 : co,
Rated Power (kW) 125 @ 6700 rpm = EEPS
Rated Torque (Nm) 210 @ 4250 - ¥  MSS
Induction Naturally Aspirated 2

E % " 2 c — o
Injection Central Spray Guided Piezo ] FTIR w

Injectors = —
: . < el FID SMPS

Max Rail Pressure (bar) 200 o : : : : 0,

© SAE Intermnational

\I_._//

All measurements made with catalytic stripper to eliminate semi-volatile modes

R Adapted from: Bock, N., Jeon, J., Kittelson, D., and Northrop, W.F., “Solid
M or mecnanicar  Particle Number and Mass Emissions from Lean and Stoichiometric Gasoline M UNIVERSITY OF MINNESOTA

E ENGINEERING Direct Injection Engine Operation,” SAE Technical Paper 2018-01-0359, 2018,
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Significant fuel savings
assoclated with lean operation

TABLE 2 Engine conditions including operating mode and

equivalence ratio. S = stoichiometric, LH = lean homogeneous, i
il 15 % fahrs Sreatifack m Average BSFC for the 10 steady state engine
conditions. Error bars represent one standard deviation.

Speed
Condition (rpm) BMEP (bar) Mode ) -
SS1 1400 2 S 1.0 400 —— Lean Stratified
1400 2 LH 0.67 = 280 — Lean Homogeneous
1400 2 LS 0.5 E 360 —— Stoichiometric
SS 2 2000 4 S 1.0 E? 340
2000 4 LH 0.65 L 320
2000 4 LS 0.65 © 300
S 3 2000 7 S 1.0 ggg
2000 7 LH 0.69 —
ss 4 2400 7 S 1.0 290 5
2400 7 LH 0.73 = | I I [ 3
Load steps 2000 2-7 S 1.0 § 1400 2000 2000 2400 £
2000 2.7 LH 0.73-067 &£ 2 bar 4 bar 7 bar 7bar E
Engine 1000 0 S 10 5 Engine condition (rom/BMEP) 2

start

R Adapted from: Bock, N., Jeon, J., Kittelson, D., and Northrop, W.F., “Solid
M or mecnanicar  Particle Number and Mass Emissions from Lean and Stoichiometric Gasoline M UNIVERSITY OF MINNESOTA

E ENGINEERING Direct Injection Engine Operation,” SAE Technical Paper 2018-01-0359, 2018,
doi:10.4271/2018-01-0359.
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Lean stratified shows much higher
emissions than other modes

Lean stratified soot mass emissions Shown here are PN>10nm, PN>23nm
approach US HD diesel standard about half, but PN>23 still at or above
6x10 EU HD diesel limit

m Average brake specific soot emissions as m Average brake specific solid PN >10 nm

. L emissions as measured by EEPS for the 10 steady state engine
measured by MSS for the 10 steady state engine conditions. e d iy .
e conditions. Error bars represent one standard deviation.
Error bars represent one standard deviation.
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Adapted from: Bock, N., Jeon, J., Kittelson, D., and Northrop, W.F., “Solid
M DEPARTMENT Particle Number and Mass Emissions from Lean and Stoichiometric Gasoline M UNIVERSITY OF MINNESOTA
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Odd size distributions — unresolved modes, emissions,
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Lean homogeneous operation:

Smaller particles, unresolved modes, much lower mass
emissions than stoichiometric
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Lean stratified operation:

Odd flat size distributions, unresolved modes, much
higher number and mass emissions
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Examine modal structure,
2000 rpm, 4 bar bmep

3 distinct modes, apparently
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Examine modal structure,
2000 rpm, 4 bar bmep

3 distinct modes, apparently 2 distinct modes, apparently
solid, CS used solid, CS used
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Modal structure of cold start emission rates of
PFI and GDI engines - based on data from:

Particle Emissions from Light Duty Vehicles during Cold-Cold Start, Huzeifa I.
Badshah, William F. Northrop, and David B. Kittelson, SAE Int. J. Engines 9(3):2016

Particle Emissions from Light Duty Vehicles during Cold-Cold Start and Identified
from Ambient Measurements, Huzeifa Ismail Badshah, M.S. Thesis, University of
Minnesota, 2015
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Typical modal structures of cold start
emission rates, average first 30 s (1-30)

Often not much difference in emission rates
between PFIl and GDI during first 30 s
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These are solid particle emission rates measured downstream of catalytic stripper
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Typical modal structures of cold start
emission rates, average 60-90 s

PFl emission rates fall much faster than GDI, especially in
the 3" (largest) mode where most of the mass is found
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These are solid particle emission rates measured downstream of catalytic stripper
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Observed submicron modal structures, solid
modes measured with catalytic stripper

 Diesel—1or2solid <« Gasoline spark

modes ignition — multiple
— Nucleation mode solid modes
* Ash — Nucleation
 Nascent soot e Ash
— Accumulation or soot  Nascent soot
mode — Multiple soot modes?
— Formed at different — Formed at different
times, different times, different
processes processes
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Modes linked to formation

Processes
e Diesel e Gasoline
_ Accumulation mode — Accumulation modes
formed by

formed by well Sy

_defmed burning fuel « Injector dribble (GDI)
jet . Valve dribble (PFI)
— Nucleation modes * Local rich pockets
form later — Nucleation modes form
later

« Unscavenged ash or . Unscavenged ash or
nascent soot nascent soot

e Unscavenged Semi- - Unscavenged Semi-
volatiles volatiles
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Conclusion

e Modal structure of size distribution
linked to formation mechanisms

 Understand the modes, understand PM
and PN formation
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Thank you
Questions?
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Size and composition trends

Higher particle number to mass ratio, smaller

particles than reported elsewhere

Lower black carbon content in smaller
particles - ash, tightly bound OC?
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Maricg, M.M., Szente, J., Loos, M., and Vogt, R., “Motor Vehicle PM Emissions Measurement at LEV Il Levels,” SAE Int. J. Engines 4(1):597-609, 2011

MFEL%PA'\R'H@R? and Mass Emissions from Lean and Stoichiometric Gasoline
est Wieatiankngine Operation,” SAE Technical Paper 2018-01-0359, 2018,
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Additional slides
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Total and solid (CS) particle number and mass
distributions, Tier 4/Interim IlIB engine, 2400 rpm, 175 N-m

* Number distribution on left, mass on right

e This condition forms large volatile nucleation mode, mainly < 23 nm,
containing nearly all the number and significant mass

* On the other hand, nearly all the solid mass and much of the solid number is
in the accumulation mode, mainly > 23 nm, consistent with the PMP

approach
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DEPARTMENT Lucachick, Glenn, Aaron Avenido, Winthrop Watts, David Kittelson, and William
% oF MecHanicaL  Northrop, 2014. Efficacy of In-Cylinder Control of Particulate Emissions to Meet CurrentM UNIVERSITY OF MINNESOTA

ENGINEERING  and Future Regulatory Standards, SAE paper number 2014-01-1597.
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Total and solid (with CS) particle number and mass
distributions, Tier 4/Interim IlIB engine, 900 rpm, 25 N-m

*  Number distribution on left, mass on right

» This condition forms large volatile nucleation mode, mainly < 23 nm, with nearly all the
number and nearly half the mass

* Alarge solid nucleation mode is present with nearly all the solid number < 23 nm, likely a
solid ash mode, these would not be counted by the PMP method

1.4E+08 400

—Volatile number 150 —Total mass Accumulation mode

1.2E+08 1 = —Solid number —Solid mass
1 Nucleation mode 300

1.0E+08 -
] \ / £ 250
= 8.0E+07 3
£ 1 -
) ; & 200
E 6.0E+07 E
a" / 3 Nucleation mode
= ] £ 150
= - \‘
O 4.0E+07
g ] : 100
= Accumulation mode
= 1
Z 2.0E+07 /
° 50
0.0E+00 — : - . . R oo -~ A,
1 10 100 1000
Particle Diameter (nm) ! 10" particle Diameter (nm) 100 1000

DEPARTMENT Lucachick, Glenn, Aaron Avenido, Winthrop Watts, David Kittelson, and William
% S EeHANICAL Northrop, 2014. Efficacy of In-Cylinder Control of Particulate Emissions to Meet CurrentM UNIVERSITY OF MINNESOTA
NGINEERING

and Future Regulatory Standards, SAE paper number 2014-01-1597.

Driven to Discover




Mass distributions, medium-duty engine, ULSD
and Beef Tallow Methyl Ester (BTME)
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Number distributions, medium-duty engine,
ULSD and Beef Tallow Methyl Ester (BTME)
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PFI engine emissions strongly influenced
by cold starts and oil consumption

1.0E+17 5
1 Q4 very high oil consumption
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These results are shown on fuel specific basis, particles added per unit fuel burned.

R Kittelson, D. B., W. F. Watts, J. P. Johnson, D. Zarling, A. Kasper, U. Baltensperger, H.
M Burtscher, J. J. Schauer, C. Christenson, and S. Schiller. 2003. Gasoline vehicle exhaustM UNIVERSITY OF MINNESOTA

OF MECHANICAL

E ENGINEERING particle sampling study. Contract Final Report U. S. Department of Energy Cooperative
Agreement DE-FC04-01A166910.
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PFI engines emit mainly during cold
phase, GDI continue even warmed up

Cold start, note scale 4x Warm start, the two GDls
switch order

Figure 6(a). FTP Phase 1 Particle Size Distribution for PFI, SGDI and WGDI Vehicles Figure 6(c). FTP Phase 3 Particle Size Distributions
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