MITIGATING ROADWAY POLLUTION IN URBAN AREAS: LOCATING TRANSIT STOPS Suzanne Paulson

Wonsik Choi, J.R. DeShazo, Dilhara Ranasinghe, Lisa Wong, Mario Gerla, Kathleen Kozawa,* Steve Mara*

*UCLA Departments of Atmospheric and Oceanic Sciences, Institute of Environment and Sustainability, Public Policy, Luskin Center for Innovation, Computer Science & Environmental Health Sciences

*California Air Resources Board

UCLA

By Frank Hank - Own work, CC BY-SA 3.0, https://commons.wikimedia.org /w/index.php?curid=31466645

Aspects of the Built Environment that Influence Exposure

2

- The heights, size and layout of the buildings
- Where the people are relative to the traffic (land use)
- Barriers between the traffic and people
- Traffic Control Strategies
- Factors influencing transit user exposure

Minutes spent waiting for the bus/train each day (roundtrip)

- Boston, New York City, SF, LA: 36-41
- Brasil: 32 66; Colombia: 22 40;
- Germany, France: 20; UK: 26 32
- Spain: 16 20; Italy: 22-54

Crowdsourced data from Moovit Realtime

UCLA

Rome 44min	lio de Janeiro (41min
Bogota 41min	Athens 39min	
Santiago 39m	in Mexico City	/ 39min
LA 39min São	Paulo 38min	Buenos Aires 35min
Istanbul 34min	London 32min	Madrid 31min
NYC 31min Te	el Aviv 24min	lilan 23min
Paris 23min	Barcelona 22min	

UCLA

4

METHODS

Mobile measurements

UCLA

Mobile Monitoring Platform

Instrument	Measurement Parameter	
CPC (TSI, Model 3007)	07) UFP number concentration (10 nm– 1μm)	
FMPS (TSI, Model 3091)	Particle size distribution (5.6–560 nm)	
DisCMini (Testo) DustTrak (TSI, Model 8520)	UFP number and average size PM _{2.5} and PM ₁₀ mass	
EcoChem PAS 2000	Particle bound PAHs	
LI-COR, Model LI-820	CO ₂	
Teledyne API Model 300E	со	
Teledyne API Model 200E	NO _x	
Teledyne API Model 400A	O ₃	
3D-Sonic Anemometer (Campbell CSAT3)	Temperature, Relative humidity, Wind speed/direction, Turbulence Characteristics	
Garmin GPSMAP 76CS	GPS	
SmartTether™	Vertical profiles of temperature, <i>RH</i> , wind speed/direction	
KciVacs video	Video record for traffic and fleet composition	

California Air Resources Board Mobile Measurement platform (MMP) Toyota RAV4 electric vehicle

Processing Mobile Data

Ranasinghe, D., W.S. Choi, A.M. Winer and S.E. Paulson (2016) Developing High Spatial Resolution Concentration Maps Using Mobile Air Quality Measurements. *Aerosol and Air Qual. Res.* **16** (8), 1841-1853.

5 Meter Spatial Resolution Map for Downtown Los Angeles

UCLA

7

Ranasinghe, D., W.S. Choi, A.M. Winer and S.E. Paulson (2016) Developing High Spatial Resolution Concentration Maps Using Mobile Air Quality Measurements. *Aerosol and Air Qual. Res.* 16 (8), 1841-1853.

Decay of pollutants around the intersections: the best place for the bus stop?

Choi, W.S., D. Ranasinghe, J.R. DeShazo, J.J. Kim and S.E. Paulson (2017) *Cross-Intersection Profiles of Ultrafine Particles in Different Built Environments: Implications for Pedestrian Exposure and Bus Transit Stops.* Submitted. UCLA

8

How Far Should the Bus Stop be from the Intersection?

Gary Larson's Far Side Cartoons

UCLA

9

"Quick, Agnes! Look! ... There it is again!"

Measurement Sites for Intersection Studies

10

UCLA

10 Intersections

Variety of Intersections; 1,744 Profiles Total

	Wilshire in Beverly Hills (5 inter- sections)	Broadway & 7 th Downtown Los Angeles	Olive & 12 th Downtown Los Angeles	Vermont & 7 th	Wilshire & Carondelet	Temple City & Las Tunas
Street width	30 - 38 m	22 & 26 m	17 & 28 m	25 & 30 m	17 & 37 m	24 & 30 m
Traffic flow rate (A.M.)	24	12 & 15	21 & 4	39 & 10	31 & 31	25 & 28
Traffic flow rate (P.M.)	47	20 & 20	8&3	38 & 12	2 & 27	26 & 29
Traffic density	Long queues, WB in A.M., EB in P.M.	Medium queues, slow vehicle speeds	Minimal queues	Long queues, often for entire block	Short queues	Long queues but queues dissipate rapidly
Distance between traffic lights	330 m	125 - 200 m	(1) 180 m (2) 125 m	(1) 224 m (2) 174 m ^c	(1) 190 m (2) 100 m	(1) 200 m (2) 135 m

12 UCLA

Cross-intersection profiles of UFPs for each traffic direction

13

UCLA

Cross-intersection profiles of UFPs for each traffic direction

Average Profiles

Cumulative distributions of UFPs at the peak and base locations of the profile

UCLA

Exposure level of transit-users to UFP around intersections

Simple time-duration model to simulate exposure reductions when the bus-stop is moved from 20 m to 40 m (or 60 m) from the intersection:

Set two UFP zones: within \pm 20 m of the intersection (high UFP) vs. around (40 and 60 m) (low UFP).

Transit-user's behavior includes disembarking, walking, crossing the intersection, waiting for a bus; assuming three pedestrian walk speeds: 0.5 (slow), 1.0 (comfortable), and 1.5 m/s (normal). Waits at the bus stop for only 10 minutes!

16

UCLA

Summary

UCLA

17

Management	Suggested Direction	Approx. Size of Effect
Bus/Transit	Further from the	Up to
Stop Siting	intersection is better, but	approximately a
	improvements diminish	factor of 3
	within several tens of	
	meters, depending on built	
	environment (block length,	
	queue lengths, etc.)	

Some Other Options:

Traffic Management

UCLA

18

Management	Suggested Direction	Approx. Size of Effect
Traffic Management	Fewer stops and smaller queues reduce emissions and elevated concentrations around intersections	Factor of 2 - 4

Plumes around Roadways: ~150 m during daytime, ~1500 m during Early Morning

 $\Delta[UFP] = [UFP] - [UFP]_{bkend}$

[Choi et al., Atmos. Environ., 62, 318-327, 2012]

UCLA

Land Use Around Heavily Travelled Roadways

UCLA

20

Management	Suggested Direction	Approx. Size of Effect	
Sensitive uses near highways: Daytime	Further is better, but under normal daytime conditions 150 meters is sufficient.	Up to a factor of four or more.	
downwind			
Sensitive uses	1500 meters is desirable.	Up to a factor of	
near highways:	Other mitigation strategies:	four or more.	
Night/Morning			
downwind			
Other Mitigation Options: Build solid barriers (quite effective); Grow trees (less			

effective but worthwhile), move physical education classes later in the day; filter indoor spaces

21 UCLA

Beyond the street canyon: block scale characteristics influencing concentrations

Management	Suggested Direction	Approx. Size of Effect	Atmospheric Conditions & Notes
Areal aspect ratio	Lower building volumes	Up to ~ a	Important under
(A _{area}); combines	and more open space	factor of 3.	calm
building area-weighted	lower pollutant		conditions.
height, building	concentrations.		
footprint, and the			
amount of open space.			
Building	Isolated tall buildings	Up to ~ a	Important under
Heterogeneity	lower concentrations	factor of	unstable
	compared to	two.	conditions with
	homogeneous shorter		moderate
	or higher buildings with		winds.
	similar volume.		

Site 1: Street Canyon

Building height (Ft.)

Broadway & 7th Site (Street view: heading South)

Thank you for your attention

23

Best Explanatory Factor in the Morning: The "Areal Aspect Ratio" = Length scale of buildings over length scale of open space

24

UCLA

Best Explanatory Factor in the Afternoon: Turbulence strength (vertical fluctuations of surface winds, σ_w)

25

Best Explanatory Factor in the Afternoon: Turbulence strength (vertical fluctuations of surface winds, σ_w)

Appears to be from non-local emissions

