## Mitigating Roadway Pollution in Urban Areas:

 Locating Transit Stops Suzanne PaulsonWonsik Choi, J.R. DeShazo, Dilhara Ranasinghe, Lisa Wong, Mario Gerla, Kathleen Kozawa,* Steve Mara*
*UCLA Departments of Atmospheric and Oceanic Sciences, Institute of Environment and Sustainability, Public Policy, Luskin Center for Innovation, Computer Science \& Environmental Health Sciences
*California Air Resources Board


## Aspects of the Built Environment that Influence Exposure

- The heights, size and layout of the buildings
- Where the people are relative to the traffic (land use)
- Barriers between the traffic and people
- Traffic Control Strategies
- Factors influencing transit user exposure


## Minutes spent waiting for the bus/train each

 day (roundtrip)- Boston, New York City, SF, LA: 36-41
- Brasil: 32-66; Colombia: 22-40;
- Germany, France: 20; UK: 26-32
- Spain: 16-20; Italy: 22-54

Crowdsourced data from
Moovit Realtime


## METHODS

Mobile measurements

## Mobile Monitoring Platform

Instrument
CPC (TSI, Model 3007) UFP number concentration (10 nm-

FMPS (TSI, Model 3091)
DisCMini (Testo)
DustTrak (TSI, Model 8520)

EcoChem PAS 2000
LI-COR, Model LI-820
Teledyne API Model 300E
Teledyne API Model 200E

Teledyne API Model 400A
3D-Sonic Anemometer (Campbell CSAT3)

Measurement Parameter $1 \mu \mathrm{~m})$
Particle size distribution (5.6-560 nm)
UFP number and average size $\mathrm{PM}_{2.5}$ and $\mathrm{PM}_{10}$ mass

Particle bound PAHs
$\mathrm{CO}_{2}$
CO
$\mathrm{NO}_{\mathrm{x}}$
$\mathrm{O}_{3}$

Temperature, Relative humidity, Wind speed/direction, Turbulence Characteristics
Garmin GPSMAP 76CS
SmartTether ${ }^{\text {TM }}$

KciVacs video

## California Air Resources Board Mobile

Measurement platform (MMP)
Toyota RAV4 electric


## Processing Mobile Data

Ranasinghe, D., W.S. Choi, A.M. Winer and S.E. Paulson (2016) Developing High Spatial Resolution Concentration Maps Using Mobile Air Quality Measurements. Aerosol and Air Qual. Res. 16 (8), 18411853.

## 5 Meter Spatial Resolution Map for Downtown Los Angeles

Ranasinghe, D., W.S. Choi, A.M. Winer and S.E. Paulson (2016) Developing High Spatial Resolution Concentration Maps Using Mobile Air Quality Measurements. Aerosol and Air Qual. Res. 16 (8), 1841-1853.


# Decay of pollutants around the intersections: the best place for the bus stop? 

Choi, W.S., D. Ranasinghe, J.R. DeShazo, J.J. Kim and S.E.
Paulson (2017) Cross-Intersection Profiles of Ultrafine Particles
in Different Built Environments: Implications for Pedestrian
Exposure and Bus Transit Stops. Submitted.

## How Far Should the Bus Stop be from the Intersection? <br> Gary Larson's Far Side Cartoons



## Measurement Sites for Intersection Studies



10 Intersections 1,744 Profiles


## Variety of Intersections; 1,744 Profiles Total

|  | Wilshire in <br> Beverly <br> Hills <br> (5 inter- <br> sections) | Broadway <br> \& 7 th <br> Downtown <br> Los <br> Angeles |  <br> 12th <br> Downtown <br> Los <br> Angeles |  <br> $7^{\text {th }}$ |  <br> Carondelet | Temple <br> City \& Las <br> Tunas |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Street <br> width | $30-38 \mathrm{~m}$ | $22 \& 26 \mathrm{~m}$ | $17 \& 28 \mathrm{~m}$ | $25 \& 30 \mathrm{~m}$ | $17 \& 37 \mathrm{~m}$ | $24 \& 30 \mathrm{~m}$ |
| Traffic flow <br> rate (A.M.) | 24 | $12 \& 15$ | $21 \& 4$ | $39 \& 10$ | $31 \& 31$ | $25 \& 28$ |
| Traffic flow <br> rate (P.M.) | 47 | $20 \& 20$ | $8 \& 3$ | $38 \& 12$ | 2 \& 27 | 26 \& 29 |

## Cross-intersection profiles of UFPs for each traffic direction



## Cross-intersection profiles of UFPs for each traffic direction





## Average Profiles



## Cumulative distributions of UFPs at the peak and base locations of the profile



## Exposure level of transit-users to UFP around intersections

Simple time-duration model to simulate exposure reductions when the bus-stop is moved from 20 m to 40 m (or 60 m ) from the intersection:

Set two UFP zones: within $\pm 20$ $\mathbf{m}$ of the intersection (high UFP) vs. around ( 40 and 60 m ) (low UFP).

Transit-user's behavior includes disembarking, walking, crossing the intersection, waiting for a bus; assuming three pedestrian walk speeds: 0.5 (slow), 1.0 (comfortable), and $1.5 \mathrm{~m} / \mathrm{s}$ (normal). Waits at the bus stop for only 10 minutes!


## Summary

## Management Suggested Direction Approx. Size of Effect <br> Bus/Transit <br> Stop Siting

## Some Other Options:

## Traffic Management

| Management | Suggested Direction | Approx. Size of <br> Effect |
| :--- | :--- | ---: |
| Traffic |  |  |
| Management | Fewer stops and smaller queues <br> reduce emissions and elevated <br> concentrations around intersections | Factor of 2-4 |
|  |  |  |




## Plumes around Roadways: ~150 m during daytime, ~1500 m during Early Morning



Normalized $\Delta[U F P(x)]=\frac{\Delta[U F P(x)]}{\Delta[U F P]_{\text {peak }}}$

$$
\Delta[U F P]=[U F P]-[U F P]_{b k g n d}
$$

## Land Use Around Heavily Travelled Roadways

| Management | Suggested Direction | Approx. Size of Effect |
| :---: | :---: | :---: |
| Sensitive uses near highways: Daytime downwind | Further is better, but under normal daytime conditions 150 meters is sufficient. | Up to a factor of four or more. |
| Sensitive uses near highways: Night/Morning downwind | 1500 meters is desirable. Other mitigation strategies: | Up to a factor of four or more. |
| Other Mitigation Options: Build solid barriers (quite effective); Grow trees (less effective but worthwhile), move physical education classes later in the day; filter indoor spaces |  |  |

## Beyond the street canyon: block scale characteristics influencing concentrations

## Management Suggested Direction Approx. Atmospheric

Size of
Effect
Lower building volumes Up to ~ a Important under and more open space factor of 3 . calm lower pollutant concentrations.

Isolated tall buildings lower concentrations compared to homogeneous shorter or higher buildings with similar volume.

Up to ~ a factor of two.
conditions with moderate winds.

## Site 1: Street Canyon

## Building height (Ft.)



Broadway \& $7^{\text {th }}$ Site (Street view: heading South)

## Thank you for your attention



## Best Explanatory Factor in the Morning:

The "Areal Aspect Ratio" =
Length scale of buildings over length scale of open space

$$
A r_{\text {area }}=\frac{H_{\text {bldg }}}{L_{\text {diag }} \times\left(1-\sum S_{\text {bldg }} / A_{\text {site }}\right)}=\frac{H_{\text {bldg }}}{L_{\text {diag }} \times\left(A_{\text {open }} / A_{\text {site }}\right)}=\frac{H_{\text {bldg }}}{L_{\text {open }}}
$$


$\mathrm{H}_{\text {bldg: }}$ : Mean area-weighted building height
$\mathrm{L}_{\text {diag }}$ : Diagonal length of block
$\mathrm{S}_{\text {bldg }}$ : Building surface area
$\mathrm{A}_{\text {site }}$ : Area of the sampling site
$\mathrm{A}_{\text {open }}$ : Area of the open space in sampling site

Choi et al., 2016

## Best Explanatory Factor in the Afternoon: Turbulence strength (vertical fluctuations of surface winds, $\sigma_{w}$ )



## Best Explanatory Factor in the Afternoon:

Turbulence strength (vertical fluctuations of surface winds, $\sigma_{w}$ ) Appears to be from non-local emissions


