Size Dependence of Morphology and Nanostructure in Ultrafine Particles Emitted by a GDI Engine Operated with Various Fuel Injection Strategies

Justin Koczak¹, Frank Alexander Ruiz Holguín², André Boehman¹, Matt Brusstar³

¹Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA ²Department of Electronic Engineering, University of Antioquia, Medellín, CO ³United States Environmental Protection Agency, Ann Arbor, MI, USA

MECHANICAL ENGINEERING

Background and Motivation

MECHANICAL ENGINEERING

- GDI engines emit large numbers of particles
 - Cold start, passing acceleration
 - Significant fraction of number lies in size range < 100 nm, but this contributes very little mass
- Like all IC engines, these particles have complex behavior:
 - Multiple sizes; temporal, chemical, and physical dynamics
- Regardless of the metric (PM, PN, SA, etc.), there is concern that these particles can be harmful to human health
 - There is a desire to reduce these emissions

2

Background and Motivation

MECHANICAL ENGINEERING

- Mitigation strategies:
 - Filters, fuel additives, calibration, geometrical tuning (e.g., injector placement), etc.
- Multiple fuel injection events is one solution likely to increase in prevalence
 - Has shown success in diesel engines
 - Plenty of examples of reductions in fuel consumption, gaseous emissions in the literature
- Has not been studied as extensively with regard to particulate matter emissions

Goals

- Show how fuel injection strategy affects some physical characteristics of the particulate matter produced by a GDI engine
 - "Coarse": fractal dimension

MECHANICAL ENGINEERING

– "Fine": Fringe length, tortuosity, and spacing

Racing Against Time

MECHANICAL ENGINEERING

There is a limited amount of time for fuel delivery, preparation, and conversion to occur!

The number, spacing, and splitting can give any number of behaviors:

- Turbulence/mixing enhancement
- Stratification
- Late burn-up
- Change combustion regime (premixed partially premixed – diffusion-limited)

Further, it is well-known that:

- Early injection timings give more homogeneous charge
- Higher pressure results in jets with more momentum; many times with higher penetration and better mixing
- Coupled injections can reduce droplet pileup

Some Definitions: LR

$$n_{p,o} = k_f \left(\frac{d_g}{d_{p,o}}\right)^{d_f}$$

 $n_{p,o}$: number of primary particles k_f : fractal prefactor - lacunarity d_g : diameter of gyration – "size" $d_{p,o}$: primary particle diameter d_f : fractal dimension – space filling

M. Lapuerta, F. J. Martos, and G. Martín-González, "Geometrical determination of the lacunarity of agglomerates with integer fractal dimension," *J. Colloid Interface Sci.*, vol. 346, no. 1, pp. 23–31, 2010.

Some Definitions: HR

• A **fringe** is a plane of atoms visible in a TEM image.

MECHANICAL ENGINEERING

- "Lattice fringe length is a measure of the physical extent of the atomic carbon layer planes ... The length reflects the dimension of the basal plane diameter... carbon material having larger fringe lengths is considered to have a higher degree of in-plane similarity with graphite."
- "Tortuosity is a measure of the curvature of the fringes. It reflects the extent of odd-numbered 5- and 7-membered carbon rings within the material. Tortuosity is [therefore] a measure of disorder in the material." It correlates with oxidative reactivity.
- **Fringe separation** is measure of the distance between adjacent planes of carbon atoms.

Yehliu, K., Vander Wal, R. L., & Boehman, A. L. (2011). Development of an HRTEM image analysis method to quantify carbon nanostructure. *Combustion and Flame*, *158*(9), 1837–1851.

Apparatus

 1.6L SGDI Ford EcoBoostbased single-cylinder engine

MECHANICAL ENGINEERING

- TSI 3082 classifier with 3081A DMA
- TSI 3776 CPC
- Naneos Partector TEM sampler
- Two-stage dilution system

Test Procedures

INIVERSITY OF MICHIGAN

MECHANICAL ENGINEERING

- CA50: -10 °BTDC adjust spark to meet this
- 8 bar IMEP_g adjust throttle to meet this – no boost
- 1500 rpm
- 3 equally-apportioned injections
- λ = 1
- Tier II EO certification gasoline
- Cam phasing at 10° from park (i.e., unphased) position

Injection Strategy

Injection timing [CAD BTDC]								
1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd
330	270	200	270	200	120	180	120	60
330	270	200	270	200	120	180	120	60
	1st 330 330	1st 2nd 330 270 330 270	Injection 1st 2nd 3rd 330 270 200 330 270 200	Introduction 1st 2nd 3rd 1st 330 270 200 270 330 270 200 270	Ibitity Explorite 1st 2nd 3rd 1st 2nd 330 270 200 270 200 330 270 200 270 200	Introduction Structure 1st 2nd 3rd 1st 2nd 3rd 330 270 200 270 200 120 330 270 200 270 200 120	Interset entropy en	Instructure Instructure

8 bar Triple 1 8 bar Triple 2 8 bar Triple 3 8 bar Triple 4 8 bar Triple 5 8 bar Triple 6

Premixed; mixing-enhancing	Column 1		
Straddle premixed/turbulence-enhancing	Column 2		
Stratified; turbulence-enhancing	Column 3		

Size Distribution Statistics

	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
LR Mode [nm]	90	90	90	80	70	80
HR Mode [nm]	90	110	100	70	60	70

- Approximately 10 nm mode repeatability day-to-day
- Less than 10 % difference in peak concentrations day-to-day
- O(1 × 10⁶) cm⁻³ total concentrations

Image Analysis Procedures

MECHANICAL ENGINEERING

- Images were taken using a JEOL 3011 TEM at the Michigan Center for Materials Characterization, (MC)²
- Low resolution (LR) analysis done using modified codes originally developed by students at the University of Antioquia (Colombia) and University of Castilla - La Mancha (Spain)
- High resolution (HR) analysis done using a modified code originally developed by Kuen Yehliu at the Pennsylvania State University (USA)

Low Resolution Results: Images

MECHANICAL ENGINEERING

UNIVERSITY OF MICHIGAN

8 bar Triple 4

Low Resolution Results: Images

MECHANICAL ENGINEERING

93nm 012 Cal: 0.419772 nm/pit 10:00:59 3/3/2017 TEM Mode: Imaging

Camera: ADV, Exposure(ms): 976 Gain: 1, Bin: Samma: 1.00, No Sharpening, Normal Contrast

HV=300 0kV Direct Mag: 40000 X:-3 Y: 50 AMT Camera Syste

UNIVERSITY OF MICHIGAN

Cal: 0.419772 nm/pi 10 14 52 3/3/2017 TEM Mode: Imaging

Camera: ADV, Exposure(ms): 976 Gain: 1, Bin: 1 Gamma: 1.00, No Sharpening, Normal Contrast

Direct Mag: 40000x

AMT Comora Surle

X:20 Y: 28

Cal: 0.419772 nm/p 09:54:39:3/3/2017 TEM Mode: Imaging HV=300.0kV Direct Mag: 40000x X-21 Y. 71 AMT Camera Syste

Camera: ADV, Exposure(ms): 976 Gain: 1, Bin: 1 amma: 1.00, No Sharpening, Normal Contrast

8 bar Triple 1: Mode = 90 nm

Low Resolution Results: Quantitation

MECHANICAL ENGINEERING

INIVERSITY OF MICHIGAN

Low Resolution Results: Quantitation

MECHANICAL ENGINEERING

UNIVERSITY OF MICHIGAN

High Resolution Results: Images

MECHANICAL ENGINEERING

UNIVERSITY OF MICHIGAN

8 Bar Triple 1

MECHANICAL ENGINEERING

UNIVERSITY OF MICHIGAN

Cal: 0.027985 nm/pix 08:56:32 5/17/2017 TEM Mode: Imaging

Camera: ADV, Exposure(ms): 976 Gain: 1, Bin: 1 Gamma: 1.00, No Sharpening, Normal Contrast 1 nm HV=300.0kV Direct Mag: 600000x X:-926 Y: -246 AMT Camera System

Cal: 0.033582 nm/pix 09:49:54 5/17/2017 TEM Mode: Imaging

Camera: ADV, Exposure(ms): 976 Gain: 1, Bin: 1 Gamma: 1.00, No Sharpening, Normal Contrast 1 nm HV=300.0kV Direct Mag: 500000x X:-933 Y:-244 AMT Camera System

8 Bar Triple 1, Mode + 60 nm = 150 nm

High Resolution Results: Quantitation 1.4 Mean Fringe Length [nm] 1.2 Mean Fringe Spacing [nm] 0.5 1 0.4 0.8 0.3 0.6 0.2 0.4 0.1 0.2 0 0 8 bar Triple 1 8 bar Triple 2 8 bar Triple 3 8 bar Triple 1 8 bar Triple 2 8 bar Triple 3 Mode – 60 nm Mode – 30 nm Mode + 30 nm Mode + 60 nm Mode

2017 Cambridge Particle Meeting | Friday, June 23rd, 2017

MECHANICAL ENGINEERING

UNIVERSITY OF MICHIGAN

High Resolution Results: Quantitation

MECHANICAL ENGINEERING

UNIVERSITY OF MICHIGAN

High Resolution Results: Quantitation

MECHANICAL ENGINEERING

INIVERSITY OF MICHIGAN

8 bar Triple 1 mode + 60 nm = 150 nm

High Resolution Results: Quantitation

MECHANICAL ENGINEERING

INIVERSITY OF MICHIGAN

8 bar Triple 1 mode + 60 nm = 150 nm

Conclusions

• The mean fraction dimensions around 2 suggest that the particles were very likely to be branched rather than linear

MECHANICAL ENGINEERING

- Large standard deviations in the measurements (30 % or more) suggest that one number (e.g., the mean) is not optimal to summarize the results
- There were few clear tends, indicating a low sensitivity to the injection strategy that were selected
- The small fringe lengths and tortuosities indicates that, on average, there was a lack of long-range order in the soots

Future Work

- Examine other dimensions (i.e., number and splitting) of the fuel injection space
- Investigate the size-specific chemistry

MECHANICAL ENGINEERING

- TEM-EELS
- TEM-EDXS
- Perhaps some bulk analysis (e.g., TGA, XPS)
- Explore some fuel effects on size-specific composition

Acknowledgements

MECHANICAL ENGINEERING

- Special thanks to
 - Staff at (MC)²
 - Staff at US EPA
 - Boehman research group (and visitors) at UM
- This work was supported by the Student Program for Excellence in Environmental Design (SPEED), a grant funded by the US EPA

MECHANICAL ENGINEERING

Thank you for your attention!

Questions?

MECHANICAL

ENGINEERING

UNIVERSITY OF MICHIGAN

Email: Justin Koczak jskoczak@umich.edu

koczak.justin@epa.gov

Supporting Slides

2017 Cambridge Particle Meeting | Friday, June 23rd, 2017

27

Further Background and Motivation

- The gasoline direct injection (GDI) engine is becoming a more popular power plant choice for light duty vehicles
 - Increased fuel economy (lower greenhouse gas emissions)

MECHANICAL ENGINEERING

- Higher power density
- GDI engines emit large numbers of particles
 - Cold start, passing acceleration
 - Significant fraction of number lies in size range < 100 nm, but this contributes very little mass
- Particulate emissions are regulated by mass in the US, by number in the EU
- Regardless of the metric (PM, PN, SA, etc.), there is concern that these particles can be harmful to human health
 - There is a desire to reduce these emissions

Further Background and Motivation

MECHANICAL ENGINEERING

- Engine aerosols have complex physical and chemical dynamics
 - One number is often not enough to quantify these behaviors
 - Health effects research has suggested toxicity may be sizedependent
- There is a need for more information on chemical and physical information of the particles with regards to size, ideally in real time

Further Background and Motivation

• GDI engines emit large numbers of particles

MECHANICAL ENGINEERING

- Cold start, passing acceleration
- Significant fraction of number lies in size range < 100 nm, but this contributes very little mass
- Particulate emissions are regulated by mass in the US, by number in the EU
- Regardless of the metric (PM, PN, SA, etc.), there is concern that these particles can be harmful to human health
 - There is a desire to reduce these emissions

Impact of Injection Strategy on PM

• Want to see how fuel injection strategy affects the particles

MECHANICAL ENGINEERING

- Expect high pressures to improve mixing, supposedly producing fewer particles
- Early injections can lead well-premixed conditions, but can cause sooting pool fires (an example of impingement)
 - Turbulence cascade also ends early
- Late injections associated with high PM production, but can help with catalyst light-off for cold start emissions
 - Insufficient mixing time
- Post-injections can sustain combustion to burn up residual PM, at risk of increasing UHC
- Fuel stratification can yield thermodynamic benefits (primarily with lean operation), but can generate more PM (e.g., localized λ effect, diffusion combustion)
- Improving combustion efficiency and thermal efficiency through optimization of heat release would ostensibly also reduce PM
 - Kinetics require elevated temperatures and pressures to increase reaction rates; also need adequate species concentrations
- Unknown: overall shape, surface area, internal structure differences as a result of the strategy?
 - These are important for health, filtration, etc.

Fluid Mechanics in the Cylinder

MECHANICAL ENGINEERING

UNIVERSITY OF MICHIGAN

Physical Effects of Injection Strategy Stratification, closed-cycle Also some practical turbulence enhancement considerations: Premixed, mixing Hardware and software-٠ enhancement driven limitations Well-controlled mixing Injection profile ٠ Minimum spacing Quantity between injections Increased penetration, Equal At mercy of presmaller droplet size, higher distribution Splitting Pressure existing flow momentum structures Larger droplet size, less Control of delivery based penetration on needs

2017 Cambridge Particle Meeting | Friday, June 23rd, 2017

MECHANICAL ENGINEERING

INIVERSITY OF MICHIGAN

33

More Apparatus

• 2013 1.6L SGDI Ford EcoBoost-based engine:

INIVERSITY OF MICHIGAN

- Single cylinder
- FEV Systemmotor crankcase

MECHANICAL ENGINEERING

- Instrumented production cylinder head
- SwRI DCO ignition system
- SwRI RPECS engine control system

2017 Cambridge Particle Meeting | Friday, June 23rd, 2017

MICHIGAN ENGINEERING

MECHANICAL ENGINEERING

Sampling Configuration

Particle Instrumentation

MECHANICAL ENGINEERING

 TSI 3082 classifier with Po 210 neutralizer and 3081A long DMA

INIVERSITY OF MICHIGAN

- TSI 3776 CPC
- Custom-built 2-stage ejector diluter system
 - CAI 602 dual-bench CO₂ analyzer to monitor dilution ratio
- Naneos Partector TEM sampler

MECHANICAL ENGINEERING

UNIVERSITY OF MICHIGAN

E. V. Luis, "Desarrollo de una Interfaz de Usuario para la Determinación de la Dimensión Fractal de Aglomerados," Universidad de Castilla - la Mancha, 2014.

High Resolution Image Processing Remove Negative Skeletonize elements on transformation **ROI** border Morphological Break triple and **ROI** selection opening and quadruple closing joints Contrast Remove **Binarization** improvement artifacts

Lowpass

filtering

MECHANICAL ENGINEERING

UNIVERSITY OF MICHIGAN

Yehliu, K., Vander Wal, R. L., & Boehman, A. L. (2011). Development of an HRTEM image analysis method to quantify carbon nanostructure. *Combustion and Flame*, *158*(9), 1837–1851.

Tophat

transformation

2017 Cambridge Particle Meeting | Friday, June 23rd, 2017

MICHIGAN ENGINEERING

Examples of Multiple Injections in GDI in the Literature

J. Su, M. Xu, P. Yin, Y. Gao, and D. Hung, "Particle Number Emissions Reduction Using Multiple Injection Strategies in a Boosted Spark-Ignition Direct-Injection (SIDI) Gasoline Engine," SAE Int. J. Engines, vol. 8, pp. 20–29, 2014.

H. Oh, C. Bae, J. Park, and J. Jeon, "Effect of the Multiple Injection on Stratified Combustion Characteristics in a Spray-Guided DISI Engine," SAE Tech. Pap., 2011.

MECHANICAL ENGINEERING

UNIVERSITY OF MICHIGAN

I. Pielecha, "Diagnostics of stratified charge combustion under the conditions of multiple gasoline direct injection," J. Therm. Anal. Calorim., vol. 118, no. 1, pp. 217–225, 2014.

Dahlander, P. and Hemdal, S., "High-Speed Photography of Stratified Combustion in an Optical GDI Engine for Different Triple Injection Strategies," SAE Technical Paper 2015-01-0745, 2015, doi:10.4271/2015-01-0745.

F. Schumann, H. Kubach, and U. Spicher, "The Influence of Injection Pressures of up to 800 bar on Catalyst Heating Operation in Gasoline Direct Injection Engines," 8th Int. Conf. Model. Diagnostics Adv. Engine Syst. (COMODIA 2012), pp. 603–608, 2012.

W. Zeng and M. Sjöberg, "Utilizing boost and double injections for enhanced stratified-charge direct-injection spark-ignition engine operation with gasoline and E30 fuels," Int. J. Engine Res., vol. 18, 2017.

M. Costa, U. Sorge, and L. Allocca, "Increasing energy efficiency of a gasoline direct injection engine through optimal synchronization of single or double injection strategies," Energy Convers. Manag., vol. 60, pp. 77–86, 2012.

T. Kim, J. Song, and S. Park, "Effects of turbulence enhancement on combustion process using a double injection strategy in direct-injection spark-ignition (DISI) gasoline engines," Int. J. Heat Fluid Flow, vol. 56, pp. 124–136, 2015.

S. S. Merola, A. Irimescu, C. Tornatore, L. Marchitto, and G. Valentino, "Split Injection in a DISI Engine Fuelled with Butanol and Gasoline Analyzed through Integrated Methodologies," SAE Int. J. Engines, vol. 8, no. 2, 2015.

H. Oh and C. Bae, "Effects of a split injection in a spray-guided direct-injection spark ignition engine under lean stratified operation," Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 228, no. 10, pp. 1232–1244, 2014.

C. Park, S. Kim, H. Kim, S. Lee, C. Kim, and Y. Moriyoshi, "Effect of a split-injection strategy on the performance of stratified lean combustion for a gasoline direct-injection engine," Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 225, no. 10, pp. 1415–1426, 2011.

J. Seo, J. S. Lee, K. H. Choi, H. Y. Kim, and S. S. Yoon, "Numerical investigation of the combustion characteristics and wall impingement with dependence on split-injection strategies from a gasoline direct-injection spark ignition engine," Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 227, no. 11, pp. 1518–1535, 2013.

T. Li, K. Nishida, Y. Zhang, T. Onoe, and H. Hiroyau, "Enhancement of stratified charge for DISI engines through split injection (Effect and its mechanism)," JSME Int. Journal, Ser. B Fluids Therm. Eng., vol. 48, no. 4, pp. 687–694, 2005.

