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Background and Motivation
• GDI engines emit large numbers of particles

– Cold start, passing acceleration 
– Significant fraction of number lies in size range < 100 nm, but this 

contributes very little mass 

• Like all IC engines, these particles have complex behavior:
– Multiple sizes; temporal, chemical, and physical dynamics

• Regardless of the metric (PM, PN, SA, etc.), there is concern 
that these particles can be harmful to human health
– There is a desire to reduce these emissions
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Background and Motivation
• Mitigation strategies:

– Filters, fuel additives, calibration, geometrical tuning (e.g., 
injector placement), etc.

• Multiple fuel injection events is one solution likely to increase 
in prevalence
– Has shown success in diesel engines
– Plenty of examples of reductions in fuel consumption, gaseous 

emissions in the literature

• Has not been studied as extensively with regard to particulate 
matter emissions
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Goals

• Show how fuel injection strategy affects 
some physical characteristics of the 
particulate matter produced by a GDI 
engine
– “Coarse”: fractal dimension

– “Fine”: Fringe length, tortuosity, and spacing
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Racing Against Time There is a limited amount of time for fuel 
delivery, preparation, and conversion to occur!

The number, spacing, and splitting can give 
any number of behaviors:
• Turbulence/mixing enhancement
• Stratification
• Late burn-up
• Change combustion regime (premixed –

partially premixed – diffusion-limited)

Further, it is well-known that:
• Early injection timings give more homogeneous charge
• Higher pressure results in jets with more momentum; 

many times with higher penetration and better mixing
• Coupled injections can reduce droplet pileup
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Some Definitions: LR

𝑛𝑝,𝑜 = 𝑘𝑓
𝑑𝑔

𝑑𝑝,𝑜

𝑑𝑓

M. Lapuerta, F. J. Martos, and G. Martín-González, “Geometrical determination of the lacunarity of agglomerates with integer 
fractal dimension,” J. Colloid Interface Sci., vol. 346, no. 1, pp. 23–31, 2010.
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𝑛𝑝,𝑜: number of primary particles

𝑘𝑓: fractal prefactor - lacunarity

𝑑𝑔: diameter of gyration – “size”

𝑑𝑝,𝑜: primary particle diameter

𝑑𝑓: fractal dimension – space filling



Some Definitions: HR
• A fringe is a plane of atoms visible in a TEM image.
• “Lattice fringe length is a measure of the physical extent of the atomic 

carbon layer planes … The length reflects the dimension of the basal 
plane diameter… carbon material having larger fringe lengths is 
considered to have a higher degree of in-plane similarity with graphite.”

• “Tortuosity is a measure of the curvature of the fringes. It reflects the 
extent of odd-numbered 5- and 7-membered carbon rings within the 
material. Tortuosity is [therefore] a measure of disorder in the material.” 
It correlates with oxidative reactivity.

• Fringe separation is measure of the distance between adjacent planes 
of carbon atoms.

Yehliu, K., Vander Wal, R. L., & Boehman, A. L. (2011). Development of an HRTEM image analysis method to quantify carbon 
nanostructure. Combustion and Flame, 158(9), 1837–1851. 

2017 Cambridge Particle Meeting | Friday, June 23rd, 2017 7



Apparatus
• 1.6L SGDI Ford EcoBoost-

based single-cylinder 
engine

• TSI 3082 classifier with 
3081A DMA

• TSI 3776 CPC
• Naneos Partector TEM 

sampler
• Two-stage dilution system
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Test Procedures
• CA50: -10 °BTDC – adjust spark to 

meet this
• 8 bar IMEPg – adjust throttle to 

meet this – no boost
• 1500 rpm
• 3 equally-apportioned injections
• λ = 1
• Tier II E0 certification gasoline
• Cam phasing at 10° from park (i.e., 

unphased) position

9

Injection timing [CAD BTDC]

Injection pressure [bar] 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

50 330 270 200 270 200 120 180 120 60

200 330 270 200 270 200 120 180 120 60

8 bar Triple 1 8 bar Triple 2 8 bar Triple 3 8 bar Triple 4 8 bar Triple 5 8 bar Triple 6

Premixed; mixing-enhancing Column 1

Straddle premixed/turbulence-enhancing Column 2

Stratified; turbulence-enhancing Column 3

Injection Strategy
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Sampling Procedures
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Size Distribution Statistics

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

LR Mode [nm] 90 90 90 80 70 80

HR Mode [nm] 90 110 100 70 60 70
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• Approximately 10 nm mode repeatability day-to-day
• Less than 10 % difference in peak concentrations day-to-day
• O(1 × 106) cm-3 total concentrations



Image Analysis Procedures
• Images were taken using a JEOL 3011 TEM at the 

Michigan Center for Materials Characterization, (MC)2

• Low resolution (LR) analysis done using modified codes 
originally developed by students at the University of 
Antioquia (Colombia) and University of Castilla - La 
Mancha (Spain)

• High resolution (HR) analysis done using a modified code 
originally developed by Kuen Yehliu at the Pennsylvania 
State University (USA)
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Low Resolution Results: Images
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8 bar Triple 4



Low Resolution Results: Images
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8 bar Triple 1: Mode = 90 nm



Low Resolution Results: Quantitation
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Low Resolution Results: Quantitation
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High Resolution Results: Images
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Mode – 60 nm = 30 nm Mode – 30 nm = 60 nm Mode = 90 nm Mode + 30 nm = 120 nm Mode + 60 nm  = 150 nm 

 

8 Bar Triple 1



High Resolution Results: Images
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8 Bar Triple 1, Mode + 60 nm = 150 nm



High Resolution Results: Quantitation

192017 Cambridge Particle Meeting | Friday, June 23rd, 2017

0

0.1

0.2

0.3

0.4

0.5

0.6

8 bar Triple 1 8 bar Triple 2 8 bar Triple 3

M
ea

n
 F

ri
n

ge
 S

p
ac

in
g 

[n
m

]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 bar Triple 1 8 bar Triple 2 8 bar Triple 3

M
ea

n
 F

ri
n

ge
 L

en
gt

h
 [

n
m

]

Mode – 60 nm Mode – 30 nm Mode Mode + 30 nm Mode + 60 nm



High Resolution Results: Quantitation
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High Resolution Results: Quantitation
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High Resolution Results: Quantitation
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Conclusions
• The mean fraction dimensions around 2 suggest that the 

particles were very likely to be branched rather than linear
• Large standard deviations in the measurements (30 % or 

more) suggest that one number (e.g., the mean) is not 
optimal to summarize the results

• There were few clear tends, indicating a low sensitivity to the 
injection strategy that were selected

• The small fringe lengths and tortuosities indicates that, on 
average, there was a lack of long-range order in the soots
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Future Work
• Examine other dimensions (i.e., number and 

splitting) of the fuel injection space
• Investigate the size-specific chemistry

– TEM–EELS
– TEM–EDXS
– Perhaps some bulk analysis (e.g., TGA, XPS)

• Explore some fuel effects on size-specific 
composition
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Thank you for your attention!

Questions?

Email: Justin Koczak

jskoczak@umich.edu

koczak.justin@epa.gov
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Supporting Slides
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Further Background and Motivation
• The gasoline direct injection (GDI) engine is becoming a more popular power 

plant choice for light duty vehicles
– Increased fuel economy (lower greenhouse gas emissions)
– Higher power density

• GDI engines emit large numbers of particles
– Cold start, passing acceleration
– Significant fraction of number lies in size range < 100 nm, but this contributes very 

little mass

• Particulate emissions are regulated by mass in the US, by number in the EU
• Regardless of the metric (PM, PN, SA, etc.), there is concern that these particles 

can be harmful to human health
– There is a desire to reduce these emissions
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Further Background and Motivation
• Engine aerosols have complex physical and chemical 

dynamics
– One number is often not enough to quantify these 

behaviors
– Health effects research has suggested toxicity may be size-

dependent

• There is a need for more information on chemical and 
physical information of the particles with regards to 
size, ideally in real time
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Further Background and Motivation
• GDI engines emit large numbers of particles

– Cold start, passing acceleration
– Significant fraction of number lies in size range < 100 nm, but this 

contributes very little mass

• Particulate emissions are regulated by mass in the US, by number in 
the EU

• Regardless of the metric (PM, PN, SA, etc.), there is concern that 
these particles can be harmful to human health
– There is a desire to reduce these emissions
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Impact of Injection Strategy on PM
• Want to see how fuel injection strategy affects the particles

– Expect high pressures to improve mixing, supposedly producing fewer particles

• Early injections can lead well-premixed conditions, but can cause sooting pool fires (an example of impingement)

– Turbulence cascade also ends early

• Late injections associated with high PM production, but can help with catalyst light-off for cold start emissions

– Insufficient mixing time

• Post-injections can sustain combustion to burn up residual PM, at risk of increasing UHC

• Fuel stratification can yield thermodynamic benefits (primarily with lean operation), but can generate more PM 
(e.g., localized λ effect, diffusion combustion)

• Improving combustion efficiency and thermal efficiency through optimization of heat release would ostensibly 
also reduce PM

– Kinetics require elevated temperatures and pressures to increase reaction rates; also need adequate 
species concentrations

• Unknown: overall shape, surface area, internal structure differences as a result of the strategy?

– These are important for health, filtration, etc.
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Fluid Mechanics in the Cylinder
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Physical Effects of Injection Strategy
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More Apparatus
• 2013 1.6L SGDI Ford 

EcoBoost-based engine:
• Single cylinder
• FEV Systemmotor crankcase 
• Instrumented production 

cylinder head
• SwRI DCO ignition system
• SwRI RPECS engine control 

system
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Sampling Configuration
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Exhaust 
plenum 
(≈38 L)

To diluter

Unused sample port

To smoke meter, MSS

To CVS

From engine

63.5 mm pipe

6.35 mm probe



Sampling Configuration
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TEM 
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HEPA Filter
Makeup air in

To building 
exhaust



Dilution Configuration
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Particle Instrumentation
• TSI 3082 classifier with Po 210 

neutralizer and 3081A long 
DMA 

• TSI 3776 CPC
• Custom-built 2-stage ejector 

diluter system
– CAI 602 dual-bench CO2

analyzer to monitor dilution 
ratio

• Naneos Partector TEM sampler
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Low Resolution Image Processing
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E. V. Luis, “Desarrollo de una Interfaz de Usuario para la Determinación de la Dimensión Fractal de Aglomerados,” Universidad
de Castilla - la Mancha, 2014.
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primary particles

Clean image
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Use curve fitting to 
find fractal 
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Recompute number 
of primary particles



High Resolution Image Processing
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Yehliu, K., Vander Wal, R. L., & Boehman, A. L. (2011). Development of an HRTEM image analysis method to quantify carbon 
nanostructure. Combustion and Flame, 158(9), 1837–1851. 
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