Evolution of soot particle morphology in a diluted laminar co-flow ethylene diffusion flame

<u>Nick Eaves</u>, Jethro Akroyd, Sebastian Mosbach, Markus Kraft - CoMo Group, University of Cambridge

Maria Botero, Edward Yapp

- CARES, Nanyang Technological University

Cambridge Particle Meeting, 23 June 2017

The Need to Consider Soot

Want to reduce emissions =>

Needs models with predictive capability

PM & PN Emissions

HISTORY OF EURO EMISSIONS STANDARDS DIESEL PASSENGER CARS

Introduction dates			Petrol		Diesel		Petrol & Diesel
Euro standard	New approvals	All new registrations	NOx (g/km)	Mass of particles (g/km)	NOx (g/km)	Mass of particles (g/km	Number of ultra-fine particles per km
Euro 1	1 July 1992	31 December 1992	0.97 ⁽¹⁾	-	0.97 ⁽¹⁾	0.14	
Euro 2	1 January 1996	1 January 1997	0.5 ⁽¹⁾	-	0.9 ⁽¹⁾	0.1	1.7.1
Euro 3	1 January 2000	1 January 2001	0.15	-	0.5	0.05	745
Euro 4	1 January 2005	1 January 2006	0.08		0.25	0.025	
Euro 5	1 September 2009	1 January 2011	0.06	0.0045 ⁽²⁾	0.18	0.0045	6 × 10 ^{11 (3)}
Euro 6	1 September 2014	1 September 2015	0.06	0.0045 (2)	0.08	0.0045	6 × 10 ^{11 (4) (5)}

(1) Expressed as HC+NOx.

(2) Applicable to direct injection petrol engines.

(3) Applicable to diesel engines only.

(4) Limit of 6 × 10¹² in the case of direct injection petrol engines.

(5) Common limit of 6 × 10³³ for direct injection petrol engines and diesel engines from September 2017/September 2018.

Particle Size Distributions

- Aggregate Size Distributions (ASD)
- Primary Particle Size Distributions (PPSD)
- PPSD affects ASD^{1,2}
- Literature models not adequate²
- Cambridge model can describe ASD and PPSD
- Initial experimental results and model performance assessment
 - Experiments = Cambridge CARES
 - Modeling = CoFlame (UofT,Ryerson,UBC,NRC), DPM (Cambridge)

¹Heine et al, Aerosol Science, 2007 ²Menz & Kraft, Aerosol Sci. & Tech., 2013

nae28@cam.ac.u

Soot Formation in Flames

Experimental Set-up

- CARES
- Yale burner
- Co-flow laminar diffusion flame
- Nitrogen diluted (40%) ethylene (60%) – air flame
- TEM Grid sampling (along centerline)

Image taken from http://guilford.eng.yale.edu/yalecoflowflames/sooting.html

Image Post-Processing

Simulation Methodology

- CoFlame Code with DLR mechanism (A5)
- Post-processing gas-phase profile
- Detailed particle model solved by Monte Carlo algorithms

Parallel CoFlame Code

- 2D CFD code for steady coflow diffusion flames
- DOM radiation
- Strip-domain parallelization
- Conjugate heat transfer
- Fully coupled particle model solved via sectional method

N. Eaves et. al., CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames, Computer Physics Communications, 207:464-477, 2016

http://combustion.mie.utoronto.ca - > software

Nick Eaves

nae28@cam.ac.ul

Particle Representation

Particle Transformations

Yapp et al, Comb. Flame, 167, 320-334, 2016 Chen et al, Proc. Comb. Inst., 34, 1827-1835, 2013

Particle Transformations

Raj A. et al, Carbon, 48, 319-332, 2010

Particle Transformations

Particle rounding:

Two mechanisms for particle rounding:

- Mass addition: condensation and heterogeneous reactions
- Sintering: Rearrangement of molecules in adjacent primary particles.

Results: PPSDs

Results: PPSD Trend

Nick Eaves nae28@cam.ac.uk

GROUP

Results: ASDs

Results: ASD Trend

Nick Eaves

nae28@cam.ac.uk

Results: PPSD Growth Factor

Results: PPSD Coagulation Eff.

CoMo

GROUP

Conclusions

- Experimental and numerical results for PPSD and APSD
 - First in literature for PPSD
- Average size/dispersion reduce with HAB
 - Qualitative agreement
 - Aggregate size/dispersion under-predicted
- Additional 2D measurements
- Complete sensitivity analysis
- Improvement of model performance

Acknowledgements

