

Center of Excellence for Aerospace Particulate Emissions Reduction Research

Demonstration of an Aerospace Recommended Practice for Measuring Non-volatile PM Emissions from Gas Turbine Engines using a Prototype System

P. Lobo^{*1}, T. Rindlisbacher², B. Catron¹, S. Achterberg¹, Z. Yu³, D. Hagen¹, G. Smallwood⁴, R.C. Miake-Lye³, P. Whitefield¹, M. Trueblood¹, R. Frazee⁵, W. Silvis⁵, J. Swanson⁶ and A. Boies⁶

¹Missouri University of Science and Technology (MST)
²Swiss Federal Office of Civil Aviation (FOCA)
³Aerodyne Research Inc.
⁴National Research Council, Canada
⁵AVL North America
⁶Cambridge University

Cambridge Particle Meeting Cambridge, UK 18 May 2012

Background

- SAE E31 committee is developing an Aerospace Recommended Practice (ARP) for aircraft non-volatile PM
 - procedures, required continuous sampling conditions, and instrumentation (number and mass)
- Sampling system consists of three sections: Collection, Transfer and Measurement
 - designed for simulations gaseous and PM emissions sampling and measurement
- System development (to date)
 - SAMPLE II
 - MST Lab studies
 - AAFEX II
 - SAMPLE III
 - SR Technics Dec 2011
 - SAMPLE III.2

Concept ARP Sampling System

SR Technics Dec 2011 Campaign – Participants

Missouri University of Science and Technology

(Center of Excellence for Aerospace Particulate Emissions Reduction Research)

National Research Council Canada

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Quality in Science and Technology

Test Objectives

- Primary objective
 - Compare the performance of the MST and FOCA systems in terms of PM number, mass, size and composition (sampling system variability)

Additionally,

- Inter-compare performance of like instrument pairs (instrument package variability)
- Evaluate the impact of 10nm vs. 23nm CPC size cutoff
- Secondary objective
 - Explore the impact of volatile PM removal using a catalytic stripper

Engine Test Details

Date	Test #	Start Time	Stop Time	Engine	Test Cycle	Notes
5/12/11	1	13:12	13:34	CFM56-7B27/3	Warm up	Shakedown Test
6/12/11	2	13:36	14:25	CFM56-5C4/P	Seal Test	Mixed flow engine
7/12/11	3	15:15	16:00	CFM56-5C4	Seal Test	Mixed flow engine
9/12/11	4	08:47 11:06	09:36 11:55	CFM56-7B24/3	Seal Test	Ran 2 cycles
12/12/11	5	10:05	10:57	PW4060-1C	Seal Test	
12/12/11	6	15:47	16:36	CFM56-5C4	Seal Test	Mixed flow engine
13/12/11	7	13:35	14:12	PW4060-1C	Vibration Test	All switching valves set to open
15/12/11	8	11:23	12:25	CFM56-7B27	Seal Test	Catalytic Stripper
15/12/11	9	13:19	13:35	CFM56-7B27	Vibration Test	Catalytic Stripper
15/12/11	10	14:07	16:25	CFM56-7B27	Trim Balance Test	Catalytic Stripper

Test Matrix for the CFM56-7B24/3 Engine

System Overview

Instruments

- Instrument Suite 1
 - AVL APC
 - with catalytic stripper and 10nm cutoff CPC
 - LII
 - MSS
 - DMS500/MAAP
 - switched in between test points
 - SP-AMS
- Instrument Suite 2
 - Dekati DEED
 - with 23nm,10nm, and 2.5nm cutoff CPCs
 - LII
 - MSS
 - DMS500
 - AMS
- Gas Phase measurements
 - NOx, CO, UHC, CO2
- PM sample leg monitors
 - MST leg (TSI 3776 CPC, LiCor 840A CO2 detector)
 - FOCA leg (TSI 3776 CPC, LiCor 840A CO2 detector)

DEFAULT CONFIGURATION:

FOCA leg providing sample to Instrument Suite 1 MST leg providing sample to Instrument Suite 2

SWITCH CONFIGURATION:

FOCA leg providing sample to Instrument Suite 2 MST leg providing sample to Instrument Suite 1

Comparison of the MST and FOCA Sampling Systems – PM Mass

Good agreement in terms of PM mass between the MST and FOCA sampling systems as measured by MAAP, LII, and MSS

Difference between the two systems averaged ~12%

Comparison of the MST and FOCA Sampling Systems – PM Number

Comparison of the MST and FOCA Sampling Systems – PM Organics

Difference between the two systems in terms of PM organic content was ~ 2%

Suites 1 and 2 – LII (data from all tests)

Suites 1 and 2 – MSS

Impact of CPC cut size

 3 CPCs were installed downstream of the Dekati DEED to measure PM number concentrations

CPC	D ₅₀	Working Fluid	Single Particle Counting (p/cc)	Flow rate (L/min)
TSI 3788 CPC	2.5nm	Water	0 - 400,000	1.5
TSI 3772 CPC	10nm	1-Butanol	0 - 10,000	1
TSI 3790 CPC	23nm	1-Butanol	0 - 10,000	1

Impact of CPC cut size

CFM56-5C4

S = SWITCH configuration

CFM56-7B24/3 (Cycle 1)

16

82 ± 1

Test Point	Engine Condition (RPM)	Percent difference between 3772 and 3790	Test Point	Engine Condition (RPM)	Percent difference between 3772 and 3790
1D	1200	76 ± 19	1D	1100	73 ± 4
1S	1200	73 ± 39	25	3300	69 ± 11
25	3000	66 ± 3	2D	3300	67 ± 2
3D	3800	41 ± 5	3D	4200	40 ± 2
4D	4190	33 ± 2	35	4200	43 ± 2
5D	4398	31 ± 2	4S	4600	35 ± 1
5S	4398	34 ± 2	4D	4600	32 ± 2
651	1500	79 + 1	5D	4770	30 ± 1
601	1500	76 ± 4	5S	4770	33 ± 1
001	1500	70 ± 4	6S1	1100	72 ± 1
6S2	1500	79 ± 3	6D1	1100	68 ± 2
			6S2	1100	73 ± 2
			6D2	1100	70 ± 4
D = DEFAULT configuration			7D	1300	78 ± 5

7S

1300

PM Size Distributions

Size distributions presented here were recorded with the system operating in the DEFAULT Configuration, and were made on a parallel line to CPCs but without any additional (VPR) dilution.

** no line loss corrections applied

Size Distributions were measured with the DMS500 which was part of Instrumentation Suite 2

CPC cut size data interpretation with an LTO cycle perspective

LTO Cycle Emissions data for a CFM56-7B Engine

Mode	TiM (mins)	Fuel usage per mode	PM number generated per mode	PM mass generated per mode
Idle/Taxi	26	39.36%	10.62%	0.92%
Take-off	0.7	11.89%	26.32%	48.02%
Climb out	2.2	29.35%	52.81%	48.99%
Approach	4	19.41%	10.25%	2.07%

- During take off and climb out
 - >80% of PM number and mass for a CFM56-7B engine is emitted
 - Using a 23nm cut size would underestimate PM number by ~30%
 - Using a 10nm cut size would not result in an underestimation of PM number

System Configuration for tests with Catalytic Stripper

Impact of Volatile PM removal using a Catalytic Stripper

Temperature of the Catalytic Stripper

Summary

Assembled and evaluated two ARP concept systems

- Achieved simultaneous sampling on the MST and FOCA legs for all engine tests
 - Similar set of instruments on both legs
 - Switched instrument suites between the MST and FOCA legs

Successfully achieved all major test objectives

- Comparison of the two sampling systems
 - 20% difference in PM number
 - *~12% difference in PM mass
 - 2% difference in PM organic content
- Impact of CPC cut size on PM number
 - 3788 (2.5nm) and 3772 (10nm) CPC concentrations agreed to within 6%
 Significant difference observed between the 3772 (10nm) and 3790 (23nm) CPCs
 - ✤ ~80% difference at idle, ~30% difference at high power
 - As engine power increases, the mean size increases and the difference between the 3772 and 3790 CPCs decreases

21

Impact of Catalytic Stripper on the removal of volatile PM
 Volatile PM content reduced from ~1% of BC mass to ~0.5%

Acknowledgements

This work was partly funded by the FAA through the Partnership for AiR Transportation for Noise and Emissions Reduction (PARTNER) – a FAA-NASA-Transport Canada-US DoD-US EPA-sponsored Center of Excellence, under Cooperative Agreement No. 09-C-NE-MST Amendment No. 005

Opinions, findings, conclusions and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of PARTNER sponsoring organizations.