

Dynamics of Fractal-like Aerosols during Sintering: Characterization

Max L. Eggersdorfer and Sotiris E. Pratsinis Particle Technology Laboratory, ETH Zürich

Our motivation: Characterization of nanoparticle structure during gasphase synthesis

 formation of agglomerates & aggregates

ed. D.S. Ensor & K.N. Lohr, RTI Press (2011), Ch. 18, 475-507.

B. Buesser & S.E. Pratsinis, Annual Rev. Chem. Biomol. Eng., 3 (2012) 103–127.

Relation between mass, mobility and primary diameter

Outline

Part 1: Numerical

- characterization of agglomerate structure
- formation of aggregates by sintering

mass – mobility relation

Part 2: Experimental

mass-mobility characterization of ZrO₂

Scaling of Agglomerate Structure

aggregate

Freitag, 18. Mai 2012

meggers@ptl.mavt.ethz.ch

Formation of Aggregates by Sintering

Ag: grain boundary diffusion

S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland & D.Y.H. Pui, *J. Aerosol Sci.* **43** (2009) 344-355.

SiO₂: viscous flow sintering

J.C. Park, D.A. Gilbert, K. Liu & A.Y. Louie, *J. Mater. Chem.* **22** (2012) 8449-8454.

aggregate

agglomerate

1. J. Frenkel, J. Phys. 9 (1945) 385-391. 2. R.M. Kadushnikov, V.V. Skorokhod, I.G. Kamenin, V.M. Alievskii, E.Y. Nurkanov, D.M. Alievskii, Powder Metall. Met. C+ 40 (2001) 154-163.

Simulation Method: Viscous Flow Sintering

aggregate

agglomerate

Constant strain rate ε in particle $\gamma \frac{dA_i}{dt} = \iiint 3\eta \dot{\varepsilon}^2 dV_i \stackrel{\bullet}{=} 3\eta \dot{\varepsilon}^2 V_i$

Geometric Model

1. Energy balance¹

Formation of Aggregates by Sintering

Evolution of $D_f \& D_{fm}$

Ensemble average over 200 clusters with 16-512 PPs

1. A. Camenzind, H. Schulz, A. Teleki, G. Beaucage, T. Narayanan & S.E. Pratsinis, Eur. J. Inorg. Chem. (2008) 911-918.

Freitag, 18. Mai 2012

meggers@ptl.mavt.ethz.ch

Scaling of Projected Aggregate¹ Area during Sintering

$$n_{va} = k_a \left(\frac{a_a}{a_{va}}\right)^D$$

 d_{va} : average PP diameter

$$d_{va} = d_{BET} = \frac{6v}{a}$$

 n_{va} : average number of PPs

$$n_{va} = \frac{v}{\pi d_{va}^3/6}$$

 a_a : projected area

1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404.

Scaling of Projected Aggregate¹ Area during Sintering

2. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann & S.E. Pratsinis, Langmuir 27 (2011) 6358-6367.

Scaling of Projected Aggregate¹ Area during Sintering

$$k_a = 1 \& D_{\alpha} = 1.07$$
 are nearly

independent of sintering mechanism

- 1. A.I. Medalia, *J. Colloid Interface Sci.* **24** (1967) 393-404.
- 2. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann & S.E. Pratsinis, Langmuir 27 (2011) 6358-6367.
- 3. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann & S.E. Pratsinis, J. Aerosol Sci. 46 (2012) 7-19.

Freitag, 18. Mai 2012

meggers@ptl.mavt.ethz.ch

 n_{va}

Mass-mobility Relation

Surface area mean diameter from mobility size and volume

$$d_{va} = \left(\frac{\pi k_a}{6v} (d_m)^{2D_a}\right)^{1/(2D_a - 3)}$$

- 1. A.I. Medalia, J. Colloid Interface Sci. 24 (1967) 393-404.
- 2. P. Meakin, Adv. Colloid Interface Sci. 28 (1988) 249-331.
- 3. S.N. Rogak, R.C. Flagan & H.V. Nguyen, Aerosol Sci. Technol. 18 (1993) 25-47.

Summary & Conclusions

- aggregate agglomerate
- Mass-mobility relation in free molecular and transition

 $d_{va} = \left(\frac{\pi k_a}{6v} (d_m)^{2D_\alpha}\right)^{1/(2D_\alpha - 3)}$

• independent of time, material or sintering mechanism, with $k_a = 1.0 \& D_{\alpha} = 1.07$

regime:

Reality Check: Characterization of ZrO₂ Nanoparticles

Effect of Liquid Precursor Feed Rate X

X/Y Flame

- X: precursor feed liquid (ml/min)
- Y: dispersion gas (l/min)

Inreasing liquid precursor feed rate results in faster sintering & coagulation ¹

Effect of Precursor Feed Rate: Mass-Mobility

M.L. Eggersdorfer, A.J. Gröhn, C.M. Sorensen, P.H. McMurry & S.E. Pratsinis (2012) in review.

Effect of Liquid Precursor Feed Rate: d_{va}

M.L. Eggersdorfer, A.J. Gröhn, C.M. Sorensen, P.H. McMurry & S.E. Pratsinis, Mass-Mobility Characterization of Flame-made ZrO2 Aerosols: the Primary Particle Diameter & extent of Aggregation, in review. (2012)

Freitag, 18. Mai 2012

meggers@ptl.mavt.ethz.ch

aggregate

Effect of Oxygen Dispersion Flow Rate

Increasing O₂ flow rate results in a shorter residence time at high temperatures¹

1. S.E. Pratsinis, W.H. Zhu & S. Vemury, Powder Technol. 86 (1996) 87-93.

aggregate

agglomerate

Summary & Conclusions

- aggregate agglomerate
- Mass-mobility relation in free molecular and transition

$$d_{va} = \left(\frac{\pi k_a}{6v} (d_m)^{2D_a}\right)^{1/(2D_a - 3)}$$

- independent of time, material or sintering mechanism, with $k_a = 1.0 \& D_{\alpha} = 1.07$
- The d_{va} by online mass-mobility measurements is in good agreement with ex-situ BET & TEM measurements.

regime:

Creux du Van, Neuchatel, August 22, 2011

Acknowledgments:

Prof. Peter H. McMurry, University of Minnesota Prof. Christopher M. Sorensen, Kansas State University Prof. Hans J. Herrmann, ETH Zürich Arto Gröhn, ETH Zürich Dr. Dirk Kadau, Wärtsilä Schweiz AG Dr. Frank Krumeich, ETH Zürich

Agglomerates of Polydisperse Primary Particles (PP)

1. R. Botet, R. Jullien & M. Kolb, *J. Phys. A: Math. Gen.* **17** (1984) L75-L79. 2. T.A. Witten & L.M. Sander, *Phys. Rev. Lett.* **47** (1981) 1400-1403.

meggers@ptl.mavt.ethz.ch

Effect of PP Polydispersity on D_f

Effect of PP Polydispersity on D_f

Summary & Conclusions

• PP Polydispersity reduces $D_f \& D_{fm}$ and determines agglomerate structure for large σ_g (> 2.5)

Mobility d_m & Primary Particle Diameter d_{va} during Sintering

Mobility d_m & Primary Particle Diameter d_{va} during Sintering

Application to Silver Nanoparticle Sintering¹

1. S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland & D.Y.H. Pui, J. Aerosol Sci. 43 (2009) 344-355.

1. S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland & D.Y.H. Pui, *J. Aerosol Sci.* 43 (2009) 344-355. 2. C.M. Sorensen, *Aerosol Sci. Technol.* 45 (2011) 755-769.

1. S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland & D.Y.H. Pui, J. Aerosol Sci. 43 (2009) 344-355.

Freitag, 18. Mai 2012

1. S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland & D.Y.H. Pui, *J. Aerosol Sci.* **43** (2009) 344-355. 2. C.M. Sorensen, *Aerosol Sci. Technol.* **45** (2011) 755-769.

Summary and Conclusions I

1. We propose a formula to calculate d_{va} for nanoparticle agglomerates/aggregates/spheres.

$$d_{va} = \frac{6v}{a} = \left(\frac{\pi k_a}{6v} (d_m)^{2D_a}\right)^{1/(2D_a - 3)}$$

2. Viscous flow¹ and grain boundary diffusion sintering simulations show that

$$n_{va} = k_a \left(\frac{a_a}{a_{va}}\right)^{D_a}$$

is valid during sintering $\rightarrow D_{\alpha} \& k_{a}$.

1. M.L. Eggersdorfer, D. Kadau, H.J. Herrmann & S.E. Pratsinis, *Langmuir* 27 (2011) 6358-6367.

Summary and Conclusions II

- 3. d_{va} & n_{va} can be determined by realtime mass-mobility (e.g. DMA-APM) measurements using D_{α} & k_{a} from simulations.
- 4. Good agreement between d_{va} and d_{TEM} is found.
- 5. The extent of sintering is best described by mass-mobility exponent D_{fm} (monotonic increase).
- 6. Increase in prefactor k_m is an indication for sinter neck formation.

A. Camenzind, H. Schulz, A. Teleki, G. Beaucage, T. Narayanan & S.E. Pratsinis, Eur. J. Inorg. Chem. (2008) 911-918.

Evolution of Prefactor k_n and k_m during Sintering

Simulation Method: Multi-Particle Sintering

- Color: particle size based on curvature
- Vorlume¹ software to calculate particle volume, surface and neck area.
- SHAKE² algorithm to fulfill constraints for particle distances.
- Simulate viscous sintering of aggregates:
 - N = 2 512 primary particles
 - Average over 50 aggregates of each size (irregular structures)

F. Cazals, H. Kanhere & S. Loriot, *INRIA Tech Report* No. 7013 (2009).
J.P. Ryckaert, G. Ciccotti & H.J.C. Berendsen, *J. Comp. Phys.* 23 (1977) 327-341.

Effect of Primary Particle Polydispersity on D_f and k_n

M.L. Eggersdorfer, S.E. Pratsinis, Aerosol Sci. Technol., accepted.

Freitag, 18. Mai 2012

Effect of Primary Particle Polydispersity on D_{α} and k_a

M.L. Eggersdorfer, S.E. Pratsinis, Aerosol Sci. Technol., accepted.

Freitag, 18. Mai 2012

Goal: Online Characterization of Nanoparticle Morphology

The measurement of only **one property**, e.g. d_m , is **not sufficient** to characterize aggregate/ agglomerate structure

1. P. Meakin, Adv. Colloid Interface Sci. 28 (1988) 249-331.

2. S.N. Rogak, R.C. Flagan & H.V. Nguyen, Aerosol Sci. Technol. 18 (1993) 25-47.

Nomenclature

agglomerate: physically bonded

ZrO2 agglomerate generated by FSP @ PTL, ETH Zürich

aggregate: chemically or sinter-bonded

S.C. Kim, J. Wang, M.S. Emery, W.G. Shin, G.W. Mulholland & D.Y.H. Pui, *J. Aerosol Sci.* **43** (2009) 344-355.