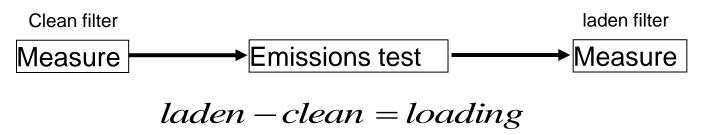


Particulate mass measurement: a statistical study

Dr. Mike Braisher Cambridge Particle Meeting 2012

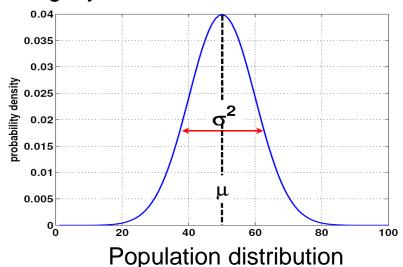
- Particulate mass emissions legislation
- Sample statistics
 - > Benefits of multiple measurements
 - > Measuring repeatability
- Propagation of uncertainty
- Other sources of uncertainty studied
 - > Filter moisture uptake
 - > Calibration drift
- Summary

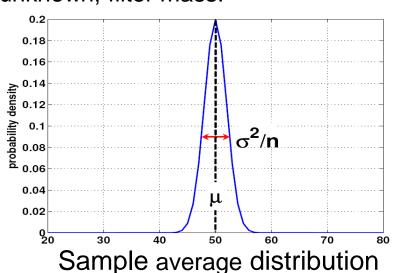

- Particulate mass emissions legislation
- Sample statistics
 - > Benefits of multiple measurements
 - > Measuring repeatability
- Propagation of uncertainty
- Other sources of uncertainty studied
 - > Filter moisture uptake
 - > Calibration drift
- Summary

Legislative method of measuring PM

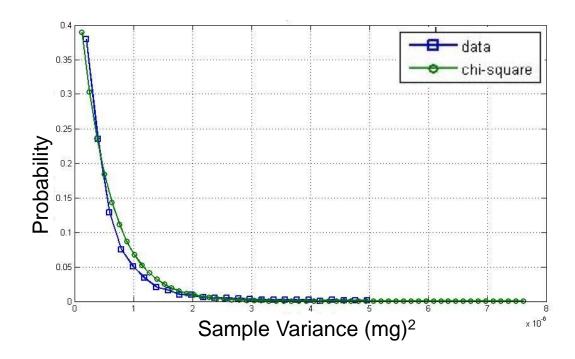
- •Particle Mass (PM) declaration is a legislative requirement for vehicle certification in all markets (Europe = 4.5 mg/km).
- •PM is measured by capture of a sample of diluted exhaust gas onto one or more glass-fibre filters (TX40).

Multiple measurements of each filter paper before and after PM loading is statistically beneficial but time consuming.


- Particulate mass emissions legislation
- Sample statistics
 - > Benefits of multiple measurements
 - > Measuring repeatability
- Propagation of uncertainty
- Other sources of uncertainty studied
 - > Filter moisture uptake
 - > Calibration drift
- Summary

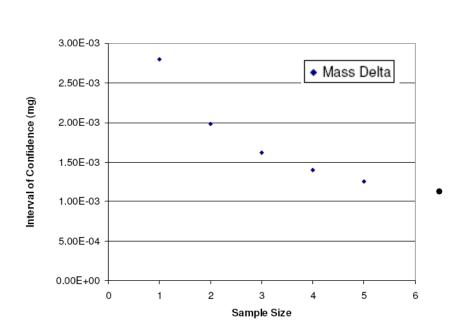

Why are multiple measurements statistically beneficial?

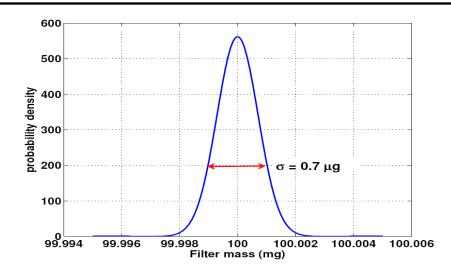
- Whenever a measurement is repeated, the results are never quite identical and variability is observed within a set of repeat readings.
- By taking a larger number of measurements, the sample average is more tightly distributed around the true, but unknown, filter mass.



Study of repeatability

• If sampling from a normal distribution, then the sample variances should be distributed as a Chi-square with 2 degrees of freedom...


Confidence interval v sample size for filter mass measurement



Based on the data set analysed:

$$\sigma = 7.1 \times 10^{-4} \text{ mg}$$

The uncertainty of PM loading on the filter is twice the variance of the repeatability of the filter measurement.

- Particulate mass emissions legislation
- Sample statistics
 - > Benefits of multiple measurements
 - > Measuring repeatability
- Propagation of uncertainty
- Other sources of uncertainty studied
 - > Filter moisture uptake
 - > Calibration drift
- Summary

Propagation of uncertainty

 The calculated CI's for PM filter loading can be propagated through the European and US legislative equations to assess its contribution to uncertainty in the final result...

$$M_{p} = \left(\frac{V_{CVS}}{V_{DLS}D}\right) \Delta M$$

$$M_{pi} = \left(\frac{V_{CVS}}{V_{DLS}}\right) \Delta M$$

$$M_{p} = 0.43 \left(\frac{M_{p1} + M_{p2}}{D_{1} + D_{2}} \right) + 0.57 \left(\frac{M_{p2} + M_{p3}}{D_{2} + D_{3}} \right)$$

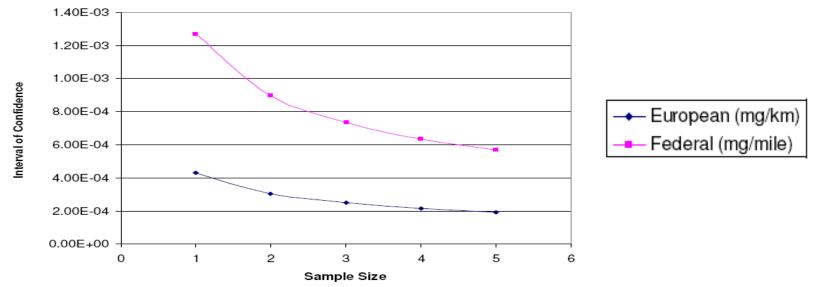
ΔM= Change in Mass (mg)

M_p= Total Particulate Mass (mg/km, mg/mile)

M_{pi}= Total Phase Particulate Mass (mg)

D= Distance Travelled

V_{cvs}= Volume of Gas through Dilution Tunnel


V_{DLS}= Volume of Gas through Filters

Propagation of uncertainty

 The uncertainty in total PM (either mg/km or mg/mile) can be plotted as a function of sample size...

 With an increase in repeat filter mass measurements, the uncertainty in total PM result decreases, but with diminishing return.

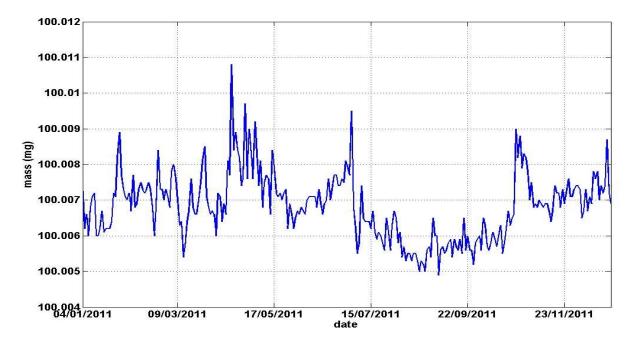
Identification of anomalous results

- Even with a sample size n = 1, the 99% confidence interval for the European total PM result is 0.1% of the 4.5mg/km limit.
- However, taking two measurements allows identification of anomalous measurements. If the two repeat measurements differ by more than a predefined tolerance, then one of the results could be anomalous.
- Suggested tolerance of 3.6 µg corresponding to a 99% confidence interval.

- Particulate mass emissions legislation
- Sample statistics
 - > Benefits of multiple measurements
 - > Measuring repeatability
- Propagation of uncertainty
- Other sources of uncertainty studied
 - > Filter moisture uptake
 - > Calibration drift
- Summary

Reference filter mass analysis

- As part of the statistical study, the mass of a reference filter was recorded for three months with an average daily increase of 0.5 µg observed, equating to 0.009 mg/km.
- This result was found to be caused by moisture uptake by the filter.



Calibration drift

- Each day, a metal reference weight is measured.
- Range of 5.9 μg, daily average drift of 0.5 μg.

- Particulate mass emissions legislation
- Sample statistics
 - > Benefits of multiple measurements
 - > Measuring repeatability
- Propagation of uncertainty
- Other sources of uncertainty studied
 - > Filter moisture uptake
 - > Calibration drift
- Summary

Summary

A statistical analysis of the particulate mass measurement capability was undertaken and the results support the following conclusions...

- The sample variances followed a Chi-square distribution, indicating that repeatability measurements are normally distributed with $\sigma = 0.7 \ \mu g$.
- Propagation through the EU and US PM calculations results in a 99% confidence interval of $0.4 \mu g/km$ or $1.2 \mu g/mile$ respectively.
- Taking two measurements allows for identification of outliers.
- TX40 filters gain mass through moisture uptake at a rate of 0.5 μg/day.
- Apparent drift in balance calibration of 0.5 μg/day.

Thank You for listening. Any questions or comments greatly appreciated.

I would especially welcome any comments on...

The validity of the statistical analysis.

The observed variability in reference weight results.

