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PM studies for automotive engines 



Upgraded laboratory 

New investment £4m  



DMF, Ethanol – alternatives to gasoline   

 

 



Why researches on DMF   

• DMF has physical properties very close to gasoline, but it has a very 
high octane number (RON=119) and relatively low volatility.  

• Compared to ethanol, it has an energy density higher by 60 per cent in 
volume and by 40% in mass. 

• DMF is stable in storage and not soluble in water and therefore it 
cannot become contaminated by absorbing water from the atmosphere.  

• It consumes only one-third of the energy in the evaporation stage of its 
production, compared with that required to evaporate a solution of 
ethanol produced by fermentation for biofuel applications.  

The most attractive advantage is that 
making DMF will not compete with land 
and food, and therefore it can be an ideal 
candidate for a new generation of 
sustainable bio-fuel! 



Gasoline type of fuel spray characterisation 
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Single cylinder GDI Engine and SMPS  

Jaguar AJ133 

SMPS (Model: 3936)  

SMPS Settings 

Sample Flow Rate (L/min) 1 

Sheath Flow Rate (L/min) 10 

Scan Time (s) 120 

Minimum Particle Diameter (nm) 7.23 

Maximum Particle Diameter (nm) 294.3 
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Figure 10 (a)                1500rpm,  = 1  
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Figure 10 (b)                1500rpm,  = 1
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Figure 10 (c)                1500rpm,  = 1
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Figure 10 (d)                1500rpm,  = 1

DMF, Ethanol and gasoline – gaseous emissions 



Effect of Load 
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Figure 11 (a)               1500rpm,  = 1

PM size distribution at lower load    

More accumulation mode particles than nucleation ones with the 

nucleation mode dominating the distribution.  
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Figure 11 (b)               1500rpm,  = 1

PM size distributions at higher load    

The separation between the nucleation and accumulation modes becomes 

clear at higher load.  



Effect of Spark Sensitivity  
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Figure 11c                    1500rpm,  = 1

Spark retard largely affects the nucleation mode and not the 

accumulation mode distribution 

Gasoline at SR10  
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Figure 11a                    1500rpm,  = 1

PM @SR10 is 359,614 #/cm3 @ 38.5nm, 46% higher than at MBT  

Ethanol at SR10  



Increase in particle concentration and diameter is less than 

half  compared with gasoline 

DMF at SR10  
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Figure 11b                    1500rpm,  = 1
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Total PM concentration with DMF increases by 1,429 particles/cm3 (2.1%), 

whereas with ethanol this is 12,620 particles/cm3 (26.6%).  

Total PM concentration  
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Both of the biofuels have larger total number concentrations 

compared to gasoline due to the dominant nucleation mode.  

Mean diameter 



Comparison of PM emissions 

between RME blends and diesel 

fuels   



Jaguar  V6 diesel engine (Ford Lion)    
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B30 are much higher relatively in PM mainly for smaller diameters 

(nuclei mode) compared to ULSD  
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Particle numbers in light load   
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Particle numbers in higher load   

Size distributions re often mono-module with the 

nucleation mode dominating the distribution 



Particle numbers in cold start  

Variation in nucleation mode is small with RME blends 

With little difference for higher RME blends  



Particle numbers in cold start  

Variation in PM with RME blends is mainly with accumulation 

mode, which drop clearly with increasing RME blend ratio   



Summary of main conclusions 

With Ethanol an DMF 

• The separation between the nucleation and accumulation modes 

becomes clear at higher load with the nucleation mode dominate the 

distribution.  

• More accumulation mode particles than nucleation ones 

• Spark retard largely affects the nucleation mode and not the 

accumulation mode distribution 

• Ethanol has higher spark-sensitivity whereas DMF is the minimum   

 
With RME 

• Much relatively higher portion of PM in smaller diameters (nuclei 

mode) compared to ULSD 

• Variation in PM with RME blends is mainly with accumulation mode,     

which drop clearly with increasing RME blend ratio   



Thanks very much for your attention 

 

  


