

Some Characteristics of Particulate Matter Exhaust Emissions of Bio-fuels

Professor Hongming Xu School of Mechanical Engineering

18 May 2012 Cambridge Particle Meeting

• Work carried out

<u>PhD Research Students</u> R. Daniel, C. Wang, D. Liu and other contributors

Future Power System Group, Future Engines and Fuels Lab, University of Birmingham

- Financial support TSB, EPSRC and AWM
- Technical support Cambustion, Jaguar Land Rover, Shell and TSI

- 1. Background
- 2. Research on bio-fuels
 - DMF, Ethanol
 - RME
- 3. Some results and discussion
- 4. Summary

PM studies for automotive engines

Upgraded laboratory New investment £4m

Birmingham Science City

DMF, Ethanol – alternatives to gasoline

Name(s) ^{i,ii}	2,5 Dimethylfuran	Ethanol	Gasoline
Linear Structure Formula ⁱ	(CH2)2C4H20	CH ₂ OCH ₂	Variable
Molecular <mark>Formulaⁱ</mark>	C ₆ H ₂ O	C ₂ H ₆ O	C2 to C14
Molecule 3D <u>View^{iv}</u>			Variable
Molecule <u>Schematic^{iv}</u>	ң _а с <mark>о</mark> сң	Но∕сн₃	Variable
Molecule <u>Schematic^{iv}</u> BP, Boiling Point (1atm) ⁱ	H ₃ C CH ₃ 93.0°С	HO CH ₃	Variable
Molecule <u>Schematiciv</u> BP, Boiling Point (1atm) ⁱ Enthalpy of <u>Vaporization^{iv}</u> (^{20°C})	H ₃ C CH ₃ 93.0°C 31.91kJmol ⁻¹	HO CH ₃ 77.3°C 43.2496kJmol ⁻¹	Variable
Molecule <u>Schematic^{iv}</u> BP, Boiling Point (1atm) ⁱ Enthalpy of <u>Vaporization^{iv}</u> (^{20°C}) Enthalpy of Combustion ⁱⁱⁱ	H ₃ C CH ₃ 93.0°C 31.91kjmol ⁻¹ 42.0kjmol ⁻¹	HO CH ₃ 77.3°C 43.2496kJmol ⁻¹ 26.9kJmol ⁻¹	Variable 43.4kJmol ⁻¹
Molecule <u>Schematiciv</u> BP, Boiling Point (1atm) ⁱ Enthalpy of <u>Vaporization^{iv}</u> (20°C) Enthalpy of Combustion ⁱⁱⁱ ρ Density of Liquid ⁱ	H ₃ C CH ₃ 93.0°C 31.91kjmol ⁻¹ 42.0kjmol ⁻¹ 0.8954kgm ⁻² @20°C	HO CH ₃ 77.3°C 43.2496kjmol ⁻¹ 26.9kjmol ⁻¹ 0.79363kgm ⁻³ @15°C	Variable 43.4kJmol ⁻¹
Molecule Schematic ^{iv} BP, Boiling Point (1atm) ⁱ Enthalpy of Vaporization ^{iv} (20°C) Enthalpy of Combustion ⁱⁱⁱ P. Density of Liquid ⁱ Research Octane Number (RON) ^v	H ₃ C CH ₃ 93.0°C 31.91kJmol ⁻¹ 42.0kJmol ⁻¹ 0.8954kgm ⁻³ @20°C 119	HO CH ₃ 77.3°C 43.2496kJmol ⁻¹ 26.9kJmol ⁻¹ 0.79363kgm ⁻³ @15°C 110 ^{vii}	Variable 43.4kJmol ⁻¹ 95 ^{iv}

- DMF has physical properties very close to gasoline, but it has a very high octane number (RON=119) and relatively low volatility.
- Compared to ethanol, it has an energy density higher by 60 per cent in volume and by 40% in mass.
- DMF is stable in storage and not soluble in water and therefore it cannot become contaminated by absorbing water from the atmosphere.
- It consumes only one-third of the energy in the evaporation stage of its production, compared with that required to evaporate a solution of ethanol produced by fermentation for biofuel applications.

The most attractive advantage is that making DMF will not compete with land and food, and therefore it can be an ideal candidate for a new generation of sustainable bio-fuel!

Gasoline type of fuel spray characterisation

Single cylinder GDI Engine and SMPS

SMPS Settings		
Sample Flow Rate (L/min)	1	
Sheath Flow Rate (L/min)	10	
Scan Time (s)	120	
Minimum Particle Diameter (nm)	7.23	
Maximum Particle Diameter (nm)	294.3	

DMF, Ethanol and gasoline – gaseous emissions

Effect of Load

PM size distribution at lower load

More accumulation mode particles than nucleation ones with the nucleation mode dominating the distribution.

PM size distributions at higher load

The separation between the nucleation and accumulation modes becomes clear at higher load.

Effect of Spark Sensitivity

Gasoline at SR10

Spark retard largely affects the nucleation mode and not the accumulation mode distribution

Ethanol at SR10

PM @SR10 is 359,614 #/cm³ @ 38.5nm, 46% higher than at MBT

DMF at SR10

Increase in particle concentration and diameter is less than half compared with gasoline

Total PM concentration with DMF increases by 1,429 particles/cm³ (2.1%), whereas with ethanol this is 12,620 particles/cm³ (26.6%).

Mean diameter

Both of the biofuels have larger total number concentrations compared to gasoline due to the dominant nucleation mode.

Comparison of PM emissions between RME blends and diesel fuels

Jaguar V6 diesel engine (Ford Lion)

DMS 500 sampling system layout

B30 are much higher relatively in PM mainly for smaller diameters (nuclei mode) compared to ULSD

Size distributions re often mono-module with the nucleation mode dominating the distribution

Variation in nucleation mode is small with RME blends With little difference for higher RME blends

Particle numbers in cold start

Variation in PM with RME blends is mainly with accumulation mode, which drop clearly with increasing RME blend ratio

With Ethanol an DMF

- The separation between the nucleation and accumulation modes becomes clear at higher load with the nucleation mode dominate the distribution.
- More accumulation mode particles than nucleation ones
- Spark retard largely affects the nucleation mode and not the accumulation mode distribution
- Ethanol has higher spark-sensitivity whereas DMF is the minimum

With RME

- Much relatively higher portion of PM in smaller diameters (nuclei mode) compared to ULSD
- Variation in PM with RME blends is mainly with accumulation mode, which drop clearly with increasing RME blend ratio

Thanks very much for your attention