Department of Engineering Science University of Oxford

Felix Leach, Richard Stone – University of Oxford Dave Richardson – Jaguar Cars

felix.leach@eng.ox.ac.uk

The Effect of Fuel Volatility and Aromatic Content on Particulate Emissions

Outline

- Introduction
 - Honda paper
- Fuel design
 - Component selection
 - Raoult's law
 - UNIFAC
- Experimental procedure
 - Engine and operating point
 - Test points
- Instrumentation
- Results
 - Model fuels
 - EN228 Gasoline
 - EU5 Reference fuel
- Conclusions

What effect do aromatic content and fuel volatility have on particulate emissions?

- SAE 2010-01-2115 paper "Development of a predictive model for gasoline vehicle particulate matter emissions" (Aikawa, Sakurai, & Jetter)
- Honda PM number index: $I(VP, DBE) = \sum_{i=1}^{n} \left[\frac{DBE_i + 1}{VP_i} \right] W_{ti}$
- DBE: Double bond equivalent
 - A measure of how unsaturated a Hydrocarbon is

$$DBE = \frac{2C - H - N + 2}{2}$$

- No independent control of volatility and DBE. PFI engine only.
- Aim:
 - Verify index and extend to SGDI combustion system

Honda paper

- Base fuel + 10% additives
 - 2,2,4-Trimethylpentane
 - Dodecane
 - Ethylbenzene
 - 1,2,4-Trimethylbenzene
 - Ethanol
- PM index range 1.01 3.86
- Range of worldwide fuels tested

Relationship between PN (#/km) and PM index over NEDC (Aikawa, 2010)

Range of PM indexes of a selection of commercially available fuels worldwide (Aikawa, 2010)

The effect of fuel volatility and aromatic content M on particulate emissions S

Fuel composition

	T _b (K), 1.01325 bar	RON	BON
n-pentane	309.2	62	60
iso-octane	372.4	100	100
n-octane	398.8	-17	-19
75/25 io/no mix	379*	n/a	70*
Toluene	383.8	104	120
iso-decane	433.5	100	126
n-decane	447.3	-17	-41
24/76 id/nd mix	444*	n/a	-1*
1,3,5-Trimethylbenzene	437.9	n/a	161

Aromatic component selection based on BP and RON

* Linear average

The effect of fuel volatility and aromatic content on particulate emissions

Fuel design Raoult's law

- Raoult's law relates the vapour pressure of an ideal solution to the vapour pressure of each of its chemical components by the molar fraction of each component present
- $y_i P = x_i P_{vpi}$ [Poling, Prausnitz, & O'Connell] y_{i_i} molar fraction of component *i* in vapour x_i the molar fraction of component *i* in liquid P_{vpi} the vapour pressure of component *i* P the partial pressure of the component.
- Assumptions:
 - Neglect effect of surface tension and any external conditions (electric/magnetic field etc)
 - Ideal mixing → linear relationship

The effect of fuel volatility and aromatic content on particulate emissions

Fuel design UNIFAC*

- UNIversal Functional Activity Coefficient (UNIFAC)
- Attempts to extend Raoult's Law to account for nonideal mixing
- Semi-empirical model to predict non-ideal mixture behaviour based on molecular size and interactions
- Breaks molecules into functional groups to model interactions
- Cannot be used on electrolytes

$$\ln \gamma_i = \frac{\ln \gamma_i^c}{\text{combinatorial}} + \frac{\ln \gamma_i^R}{\text{residual}}$$
$$\ln \gamma_i^c = \ln \frac{\Phi_i}{x_i} + \frac{z}{2} q_i \ln \frac{\theta_i}{\Phi_i} + l_i - \frac{\Phi_i}{x_i} \sum_j x_j l_j$$
$$\ln \gamma_i^R = q_i \left[1 - \ln \left(\sum_j \theta_j \tau_{ji} \right) - \sum_j \frac{\theta_j \tau_{ij}}{\sum_k \theta_k \tau_{kj}} \right]$$
$$l_i = \frac{z}{2} (r_i - q_i) - (r_i - 1) \quad z = 10$$
$$\theta_i = \frac{q_i x_i}{\sum_j q_j x_j} \quad \Phi_i = \frac{r_i x_i}{\sum_j r_j x_j} \quad \tau_{ji} = \exp \left(-\frac{u_{ji} - u_{ii}}{RT} \right)$$

UNIFAC equations (Poling et al 2000)

* Reid, R. C., J. M. Prausnitz, et al. (1987). The properties of gases and liquids. McGraw-Hill.

The effect of fuel volatility and aromatic content on particulate emissions

Distillation curve modelling

The effect of fuel volatility and aromatic content on particulate emissions

UNIFAC and Raoult's law results

The effect of fuel volatility and aromatic content on particulate emissions

UNIFAC and Raoult's law results

The effect of fuel volatility and aromatic content on particulate emissions

UNIFAC and Raoult's law results

Pure Raoult's Law on mixes with 35% aromatic content varying decane content with 5% pentane

The effect of fuel volatility and aromatic content on particulate emissions

Jaguar AJ-V8 Gen III 5 Litres

Naturally Aspirated

- 283 kW (380 HP) and 515 Nm,
- Compression Ratio: 11.5:1
- Cam profile switching (CPS)
- Variable geometry inlet manifold
- Supercharged Version
 - 375 kW (503 HP) and 625 Nm
 - Compression Ratio: 9.5:1
 - Eaton Supercharger
- 6 hole Bosch Injectors:
 - 150 bar Injection Pressure
- Inlet & Exhaust Variable Cam Timing
- Bore 92.5 mm, Stroke 93 mm

© Jaguar Cars Ltd

The effect of fuel volatility and aromatic content on particulate emissions

AJV8 Gen 111 Fuel Injection Pattern

6 Fuel Jets

150 bar injection system

The effect of fuel volatility and aromatic content on particulate emissions

Single Cylinder Engine with Optical Access

- Bore 89 mm
- Stroke 90 mm
- Capacity 562 cc
- Compression Ratio 11.1
- Injection Pressure 150 bar
- GDI, PFI
- IMEP 1.8bar
- Mixture (air) inlet 40°C
- Coolant 60°C
- λ 0.9 and 1.01
- 1500 rpm

The effect of fuel volatility and aromatic content on particulate emissions

Particulate Matter Measurements

- EUDC
- PN Emissions are associated with Transients
- Gaseous Emissions are dominated by the Cold-Start

SAE 2010-01-0786

The effect of fuel volatility and aromatic content on particulate emissions

High Speed Imaging – Bowditch Piston

Photron FASTCAM-1024PCI model
100K Colour Camera – 6000fps
Resolution: 512 x 256 pixels

The effect of fuel volatility and aromatic content on particulate emissions

Experimental procedure Test points

The effect of fuel volatility and aromatic content on particulate emissions

Particulate Matter measurements

The effect of fuel volatility and aromatic content on particulate emissions

In-cylinder hydrocarbon sampling

Cambustion HFR400 fast FID

- fFID measures hydrocarbon levels by chemi-ionization
- Response time ~ 4ms

The effect of fuel volatility and aromatic content on particulate emissions

Results

- Clearest trends at $\lambda = 0.9$
- Clear agreement with index

Aromatic sweep λ =0.9

Volatility sweep λ=0.9

The effect of fuel volatility and aromatic content on particulate emissions

Importance of n-pentane

- Much better agreement between volatility sweep and Honda predictions •
- Pentane mimics "light end" of commercially available ULG •

No pentane

With pentane

The effect of fuel volatility and aromatic content on particulate emissions

May 18, 2012 Slide 21

Honda

Spray penetration False colour images

The effect of fuel volatility and aromatic content on particulate emissions

Spray penetration

The effect of fuel volatility and aromatic content on particulate emissions

In-cylinder hydrocarbon sampling showing effect of pentane in fuel (40% decanes, 60% octanes)

The effect of fuel volatility and aromatic content on particulate emissions

Effect of sampling position

The effect of fuel volatility and aromatic content on particulate emissions

May 18, 2012 Slide 25

DYNO

EU5 Reference Fuel

CEC RF-02-08 fuel specification

	Min	Max
RVP (kPa)	56.0	60.0
Olefins (% v/v)	3.0	13.0
Aromatics (% v/v)	29.0	35.0
Ethanol (% v/v)	4.7	5.3
FBP (⁰ C)	190	210

	EU5 (Min I)	EU5 (Max I)
RVP* (kPa)	60.0	56.0
DBE	2.19	2.53
FBP (⁰ C)	190	210
PN Index	2.74e-2	3.43e-2

The effect of fuel volatility and aromatic content on particulate emissions

Department of Engineering Science University of Oxford

May 18, 2012

Conclusions

- Fuels blends have been devised that have independent control of volatility and aromatic content
- UNIFAC needs to be used modelling co-evaporation of aromatics
- Effect of light components on Fuel spray is significant
- Trends reported by Honda replicated in SGDI engines using model fuels
- Trends also observed using real fuels in SGDI engine
- Implications for reference fuels

Any questions?

The effect of fuel volatility and aromatic content on particulate emissions

The effect of fuel volatility and aromatic content on particulate emissions

Fuel design

Selection of aromatic components

- Looking for similar boiling points to paraffin components
 - Octanes (~379K), decanes (~444K)
- Aromatics have high RON

	T _b (K), 1.01325 bar	BON*
Benzene	353.2	108
Toluene	383.8	120
1,2,4-Trimethylbenzene	442.5	123
1,3,5-Trimethylbenzene	437.9	161

*BON (Blending Octane Number) – equivalent octane number when blended as 20% solution in a 60/40 iso-octane/n-heptane mix. Attempt to give more relevant number than RON when blended with other components. [Lovell 1948]

The effect of fuel volatility and aromatic content on particulate emissions

Digital filtering of low diameter PN

To replicate PMP measurement protocol 50% count efficiency: D50 = 23 nm >90% count efficiency: D90 = 41 nm

Wiebe function:
$$f = 1 - \exp\left[-3.54\left(\frac{d_p - 14}{40}\right)^{1.09}\right]$$

The effect of fuel volatility and aromatic content on particulate emissions

