

A Statistical Method for Particle Number Emissions Measurement Variance Analysis

Mike Braisher Cambridge Particles Meeting May 2011

- Problem outline and motivation
- Traditional approach to variance estimation
- An alternative approach to variance estimation
 - > A statistical model
 - > heteroskedasticity
- Results: Application of alternative approach
- Demonstration of instrument bias correction
- Summary

Problem outline and motivation

- Traditional approach to variance estimation
- An alternative approach to variance estimation
 - > A statistical model
 - > heteroskedasticity
- Results: Application of alternative approach
- Demonstration of instrument bias correction
- Summary

• Particle number measurement:

 European emissions regulations introduce a particle number limit (6x10¹¹ per km) for homologation of specific Diesel vehicle types.

• Experimental error:

> When an experiment is repeated under what are as nearly as possible, the same conditions, the observed results are never quite identical (Box, Hunter and Hunter, 1978).

• Key questions when undertaking any measurement:

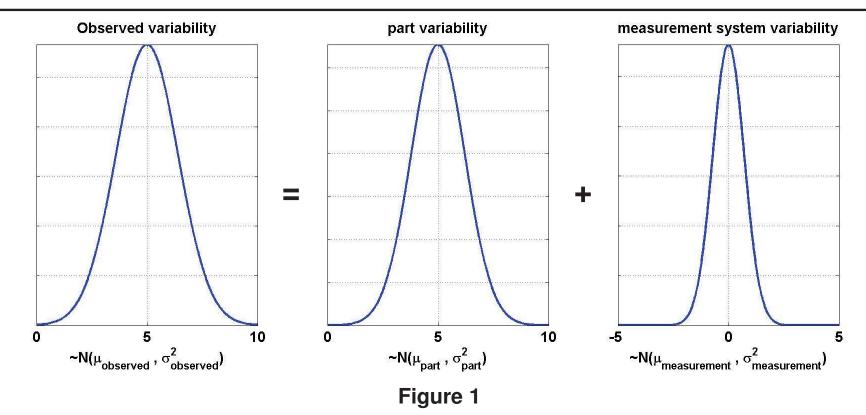
- > How robust is the result obtained?
- > How much variability in repeated results is attributable to the measurement system and how much to the part?

• Importance of understanding repeatability:

> Tolerances and target setting

- Problem outline and motivation
- Traditional approach to variance estimation
- An alternative approach to variance estimation
 - > A statistical model
 - > heteroskedasticity
- Results: Application of alternative approach
- Demonstration of instrument bias correction
- Summary

Traditional approach to variance estimation



- If the characteristic of the part being measured does not change, then the variability in results is assigned to the measurement system variance.
- **Problem**: Difficult to find a repeatable source of particulate matter.

- Problem outline and motivation
- Traditional approach to variance estimation
- An alternative approach to variance estimation
 - > A statistical model
 - > heteroskedasticity
- Results: Application of alternative approach
- Demonstration of instrument bias correction
- Summary

An alternative approach to variance estimation

•Grubbs (1948) and Box, Hunter and Hunter (1978) address the problem of estimating instrument variance with destructive testing...

- Taking simultaneous (2 or more)
 measurements removes the requirement
 for a repeatable source.
- > Sample variance is calculated from the simultaneous measurement results.
- > Sample variance is averaged across repeat experiments.

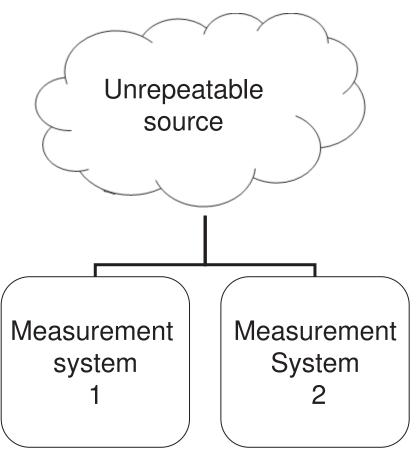


Figure 2

- Particle Number (PN) emissions can be thought of as destructive and not necessarily repeatable.
- Taking simultaneous measurements on the same PN emissions test removes the requirement for a repeatable source.

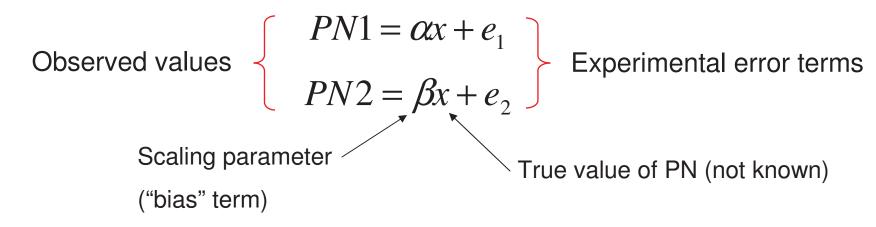
Challenges

- > PN emissions span several orders of magnitude $(10^9 10^{14} \text{ #/km})$
- > Variance is not constant across the range of measurements

Statistical model for PN measurements

Model

 Denote measurement results taken with instrument 1 as PN1 and results taken with instrument 2 as PN2.



Assumptions:

- > error terms for the two counters are sampled from identical distributions (independent and identically distributed random variables).
- > Bias scaling factors (α,β) are linear and stable!

For a sample size of 2 (i.e. a pair of measurements *PN*1 and *PN*2),
 sample variance is given by equation 1 (Box, Hunter and Hunter 1978).

$$S^{2} = \frac{(PN1 - PN2)^{2}}{2} \qquad \dots \dots Equation 1$$

• The **sample average** is given by equation 2...

$$X = \frac{PN1 + PN2}{2}$$
Equation 2

• *PN1 – PN2* is given by equation 3

$$PN1 - PN2 = (\alpha - \beta)x + (e_1 - e_2)$$
Equation 3

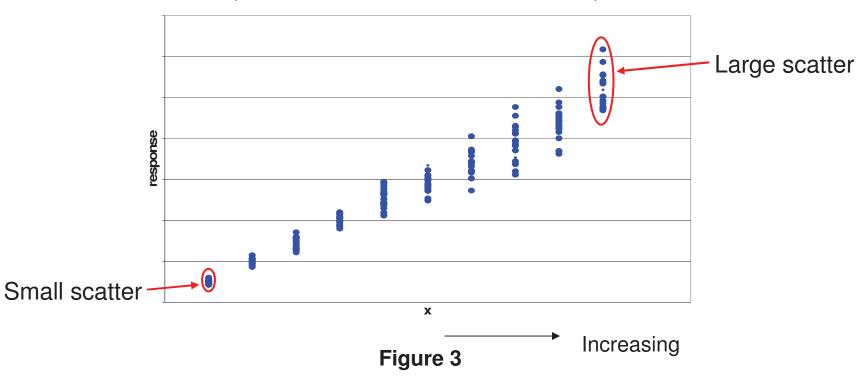
• If $\alpha = \beta$, then the sample variance reduces to equation 4

$$S^{2} = \frac{(e_{1} - e_{2})^{2}}{2}$$
Equation 4

Thus, for the case of $\alpha = \beta$, the sample variance for each pair results reduces to an estimate of the measurement variance.

Heteroskedasticity

• **Problem**: As x (true value of PN) increases, the scatter in observations from a PN counter also increases (data is said to be heteroskedastic)...



• This indicates a relationship between standard deviation in response (S) and X.

1. Take multiple measurements from vehicles with two PN counters

Results pairing	Observation counter 1	Observation counter 2
1	PN1	PN2
2	PN1	PN2
3	PN1	PN2
n	PN1	PN2

- 2. Calculate X and S for **each pair** (Equations 1 and 2).
- 3. Perform regression analysis between log(S) and log(X).

Assumption:
$$\alpha = \beta$$

- Problem outline and motivation
- Traditional approach to variance estimation
- An alternative approach to variance estimation
 - > A statistical model
 - > heteroskedasticity
- Results: Application of alternative approach
- Demonstration of instrument bias correction
- Summary

Application to PN data

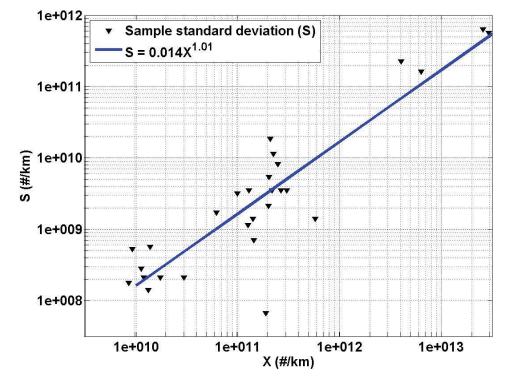


Figure 4

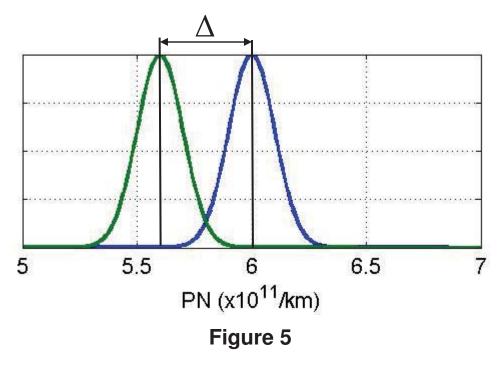
- Series of simultaneous measurements taken from a range of vehicles.
- Regression indicates:
 - > Coefficient of Variance (S/X) of 1.76%
 - 1.89% across the range 1×10^{10} –
 - 1x10¹³ per km.
 - > At $6x10^{11}$ per km, S = $1x10^{10}$ per km.

Assumption: $\alpha = \beta$

Application of variance estimation

• Estimates of variance can be used to determine the capability of the instruments in resolving true changes in PN emissions:

> At $6x10^{11}$ per km, figure 4 indicates $\sigma = 1x10^{10}$ per km.

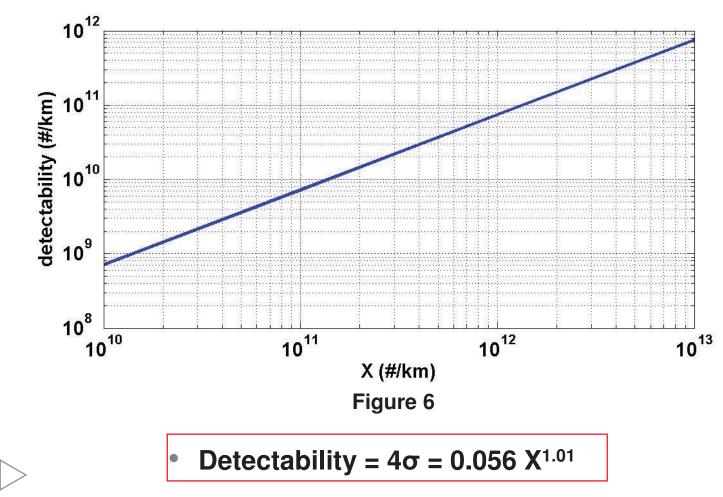


 Difference of 4σ between two peaks accounts for a probability of 95%

$$\Delta = 4\sigma = 4x10^{10}/km$$

Assumption: Errors distributed normally.

 Extending this 4σ principle across the range, the "detectability" of the instrument is shown in Figure 6...



- Problem outline and motivation
- Traditional approach to variance estimation
- An alternative approach to variance estimation
 - > A statistical model
 - > heteroskedasticity
- Results: Application of alternative approach
- Demonstration of instrument bias correction
- Summary

Case where $\alpha \neq \beta$ (correcting for instrument bias)

• **Problem:** for the case where $\alpha \neq \beta$, estimate of S^2 becomes...

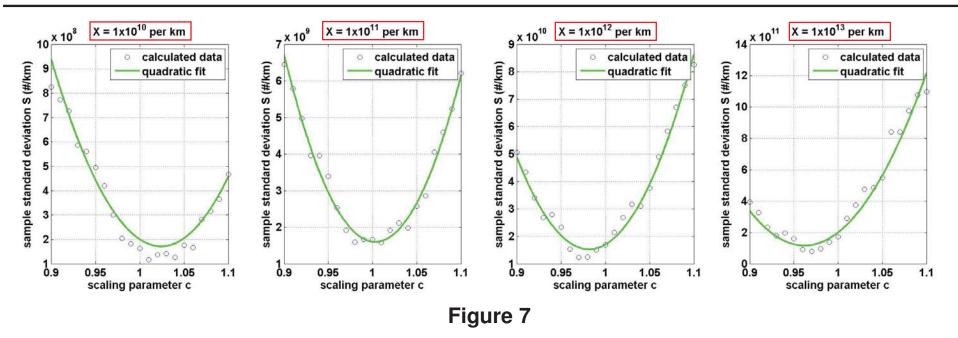
$$S^{2} = \frac{((\alpha - \beta)x + (e_{1} - e_{2}))^{2}}{2}$$
Equation 5

- ... which acts to <u>over-estimate</u> measurement variance (assuming *x* is bigger than *e*).
- **Solution:** introduce a scaling parameter *c* (Equation 6)...

$$S^{2} = \frac{(PN1 - cPN2)^{2}}{2}$$
Equation 6

...and vary *c* to minimise S^2 (case where $c = \alpha/\beta$) by re-running the regression analysis and plotting S as a function of *c*.

Demonstration of correcting for Instrument bias ($\alpha \neq \beta$)



- For all four chosen values of X, S is minimised near a c-value of 1, indicating little or no relative bias between the instruments (α = β).
- Slight differences for minimum c-values across the range indicate either:
 - > Non-linear bias factors
 - > Non-steady bias factors

- Assumes that the error distributions from two counters are identical.
- Assumes bias scaling factors (α,β) are linear across the range and stable over the course of the data collection.
- Assumes a power relationship between variance (σ^2) and x.
- Ordinary least squares regression performed when there will be errors in the "independent variable" log(X).
- Assumes, for the calculation of instrument discrimination, that the errors are normally distributed.

- Problem outline and motivation
- Traditional approach to variance estimation
- An alternative approach to variance estimation
 - > A statistical model
 - > heteroskedasticity
- Results: Application of alternative approach
- Demonstration of instrument bias correction
- Summary

- A statistical approach to Particle Number measurement repeatability estimation has been presented based on:
 - > Treating the emissions tests as destructive, removing the requirement for a repeatable source of particle emissions;
 - > Taking simultaneous observations across multiple tests;
 - > Adjusting for relative instrument bias ($\alpha \neq \beta$);
 - Performing regression analysis to model variance as a function of x (PN data is heteroskedastic);
 - > The assumptions highlighted.
- An example calculation demonstrates the instrument "detectability" to be 4x10¹⁰ per km at an emissions level of 6x10¹¹ per km, for a single emissions test.

Box, G.E.P., Hunter, W.G. and Hunter, J.S. (1978), "Statistics for Experimeters", *Wiley-Interscience*.

Grubbs, F.E. (1948), "On estimating the precision of measuring instruments and product variability", *Journal of the American Statistical Association*, Vol. 43, No. 242, 243-264.

Thank you for listening. Any comments greatly appreciated.