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Motivation

 Sub-micron particulate matter is of concern to human health

 Legislation places limits on the particulate emissions

 For model validation, a simple flame is needed

 Spatially resolved non-intrusive measurement is needed of:

 Flame temperature

 Soot volume fraction

 Soot particle diameter
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Introductions to CBT-TCS 
(Cone Beam Tomographic Three Colour Spectrometry)

 Optical diagnostic techniques 
used to measure the 3D 
temperature, soot diameter 
and soot volume fraction 
distributions

 Combination of three colour 
pyrometry and 3D 
tomography technique 
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Three Colour Pyrometry - Strategy
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Calibration of the spectral 

response of the Camera Sensor



Three Colour Pyrometry 
- emissivity & scattering models (1/2)
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Three Colour Pyrometry 
- emissivity & scattering models (2/2)
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Cone-Beam Tomography – Cone-Beam System

 Need only one projection 
for axis-symmetric object 
(e.g. laminar diffusion 
flame)
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Cone-Beam Tomography 
– Filtered Backprojection Algorithm

Step 1 Filtered Projection

Rβ(p, ζ): Projection Data

H(p, ζ): Window Function
IFFT: Inverse Fast FT; and FFT: Fast FT; ZP: Zero Padding

Step 2 Backprojection

g(t,s,z): the property field in Cartesian 

coordinate
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References: Kak, A. C., Slaney, M. (1999), Principles of Computerized Tomographic Imaging, 

IEEE press, New York

Fourier Slice Theory: FT of Projection = FT of the Field 



Cone-Beam Tomographic Three Colour 
Spectrometry (CBT-TCS) - Strategy

3D 
Temperature 

and KL
distribution

Measure the 
projection and 
do the colour 
interpolation

Using cone-beam 
tomography to 

reconstruct the 3D 
colour distribution

Construct the temperature and KL
look-up tables 

(entries: Red/Blue, Red/Green)

Thermal Radiation 
Law and calibrated 
Camera response 
curve

10



Experiment Setup - Diagram
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Experiment Setup - Photos
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 Open source tomography code

OSCaR source code URL: www.cs.toronto.edu/~urezvani/OSCaR.html

 Three MATLAB GUIs

 Functions of original code:

 Predefine parameters to do the tomography

 Implementing the 3D filtered backprojection algorithm to X-ray images from different gantry

angles by using different window functions

Software Package – Original OSCaR
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 Including one main panel and four sub-panels

 Extended functions:

 Read projection images, do the colour demosaicing and the downsampling

 Modified the 3D filtered backprojection algorithm to make it applicable to current optical

setup and apply this algorithm to individual colour channels by using different window

functions with different zero-padding lengths

 Applying 3D median filter, construct the look-up table and do the mapping to find T, D

and fv according to the selected optical components and scattering model

 Apply a circumferential average and export the final data matrix

Software Package – Modified OSCaR
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Software Package – Post-processing

15

 Merging data from different 

portions of the flame

 Display and save the selected data



Accuracy Improvement Techniques (1/2)

 Downsampling

Trade-off between accuracy and spatial resolution:

smaller pixel width     smaller difference between two adjacent      

projections, if the difference is comparable to the background 

noise poor accuracy but good spatial resolution

 3D Median Filter
apply to the T, D, or KL data

Blur the image

apply to the reconstructed RGB  

colour map

Enhance the smoothness
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Accuracy Improvement Techniques (2/2)

 Increase the zero-padding length when

using the fast Fourier transform so as to

increase the resolution in the frequency

domain

 Other techniques

 Circumferential averaging for axis-symmetric flame

 Using optical filters to make more use of the dynamic range of different 

colour channels (especially the blue)
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Sample data – ethylene co-flow laminar diffusion flame
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 Test Condition

 Fuel flow rate: 143 mL/min;

Air flow rate: 45 L/min

 Camera setup:

Frame rate: 60 frames/sec 

Aperture size: f/32 (with 2* convertor) 

Focus length: 100mm

Object to lens distance: 23.6 cm

Lens to detector distance: 17.4 cm

 Optical component

Lens: Nikon 50mm lens with 2* 

convertor

Filter: LEE E281 filter (around 0.4 

transmission efficiency for red and 

green light and 0.8 for blue light)
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Sample Data (1/4) – Hottel and Broughton
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Sample Data (2/4) – Rayleigh-Gans Theory
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Sample Data (3/4) – Rayleigh-Gans-Penndorf
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Sample Data (4/4) – Mie Scattering

22

Temperature (K)

y (cm)

z
 (

c
m

)

 

 

-0.4-0.2 0 0.2 0.4

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1500

1550

1600

1650

1700

1750

1800

1850

1900

1950

2000
Soot Volume Fraction (ppm)

y (cm)

z
 (

c
m

)

 

 

-0.4-0.2 0 0.20.4

1.5

2

2.5

3

3.5

4

4.5

5

5.5

20

40

60

80

100

120

140

160

180

200

0 0.05 0.1 0.15 0.2 0.25 0.3
1500

1600

1700

1800

1900

Radial distance (cm)

T
e
m

p
e
ra

tu
re

(K
)

0 0.05 0.1 0.15 0.2 0.25 0.3

20

40

60

80

100

Radial distance (cm)

D
ia

m
e
te

r 
(m

ic
ro

m
e
te

r)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

50

100

150

200

Radial distance (cm)

S
o

o
t 

V
o

lu
m

e
 F

ra
c
ti

o
n

 (
p

p
m

)

Diameter (nanometer)

y (cm)

z
 (

c
m

)

 

 

-0.4-0.2 0 0.20.4

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0

10

20

30

40

50

60

70

80



Assumptions (1/2)

 Particulate temperature is the same as local flame 

temperature

 Thermal radiation from other species are negligible 

compared to soot particles

 CO2: 2.0, 2.7, 4.3, 9.4, 10.4 and 15 µm

 H2O: 1.38, 1.87, 2.7, and 6.3 µm

 Chemilluminescence from radicals is negligible except from 

the circumferential base of the flame
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Assumptions (2/2)

 The radiation attenuation along the optical path 

is negligible (optical-thin approximation)

 Not clear at this point

 Can be partially corrected by using an iterative method suggested by 

Lu et al. (2009)

 Need to be corrected by introducing certain scattering models in the 

future
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Conclusions

 The CBT-TCS technique is an effective and convenient optical
diagnostic method to measure the spatially distributed temperature,
soot diameters and soot volume fraction for an axi-symmetric flame

 The optical-thin assumption may need to be addressed in the future
to increase its accuracy

 CBT-TCS can be applied to asymmetric flames by using multiple
images
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