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Motivation

 Sub-micron particulate matter is of concern to human health

 Legislation places limits on the particulate emissions

 For model validation, a simple flame is needed

 Spatially resolved non-intrusive measurement is needed of:

 Flame temperature

 Soot volume fraction

 Soot particle diameter
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Introductions to CBT-TCS 
(Cone Beam Tomographic Three Colour Spectrometry)

 Optical diagnostic techniques 
used to measure the 3D 
temperature, soot diameter 
and soot volume fraction 
distributions

 Combination of three colour 
pyrometry and 3D 
tomography technique 
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Three Colour Pyrometry - Strategy
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Calibration of the spectral 

response of the Camera Sensor



Three Colour Pyrometry 
- emissivity & scattering models (1/2)
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



Three Colour Pyrometry 
- emissivity & scattering models (2/2)
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



Cone-Beam Tomography – Cone-Beam System

 Need only one projection 
for axis-symmetric object 
(e.g. laminar diffusion 
flame)
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Cone-Beam Tomography 
– Filtered Backprojection Algorithm

Step 1 Filtered Projection

Rβ(p, ζ): Projection Data

H(p, ζ): Window Function
IFFT: Inverse Fast FT; and FFT: Fast FT; ZP: Zero Padding

Step 2 Backprojection

g(t,s,z): the property field in Cartesian 

coordinate
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References: Kak, A. C., Slaney, M. (1999), Principles of Computerized Tomographic Imaging, 

IEEE press, New York

Fourier Slice Theory: FT of Projection = FT of the Field 



Cone-Beam Tomographic Three Colour 
Spectrometry (CBT-TCS) - Strategy

3D 
Temperature 

and KL
distribution

Measure the 
projection and 
do the colour 
interpolation

Using cone-beam 
tomography to 

reconstruct the 3D 
colour distribution

Construct the temperature and KL
look-up tables 

(entries: Red/Blue, Red/Green)

Thermal Radiation 
Law and calibrated 
Camera response 
curve
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Experiment Setup - Diagram
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Experiment Setup - Photos

12



 Open source tomography code

OSCaR source code URL: www.cs.toronto.edu/~urezvani/OSCaR.html

 Three MATLAB GUIs

 Functions of original code:

 Predefine parameters to do the tomography

 Implementing the 3D filtered backprojection algorithm to X-ray images from different gantry

angles by using different window functions

Software Package – Original OSCaR
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 Including one main panel and four sub-panels

 Extended functions:

 Read projection images, do the colour demosaicing and the downsampling

 Modified the 3D filtered backprojection algorithm to make it applicable to current optical

setup and apply this algorithm to individual colour channels by using different window

functions with different zero-padding lengths

 Applying 3D median filter, construct the look-up table and do the mapping to find T, D

and fv according to the selected optical components and scattering model

 Apply a circumferential average and export the final data matrix

Software Package – Modified OSCaR
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Software Package – Post-processing
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 Merging data from different 

portions of the flame

 Display and save the selected data



Accuracy Improvement Techniques (1/2)

 Downsampling

Trade-off between accuracy and spatial resolution:

smaller pixel width     smaller difference between two adjacent      

projections, if the difference is comparable to the background 

noise poor accuracy but good spatial resolution

 3D Median Filter
apply to the T, D, or KL data

Blur the image

apply to the reconstructed RGB  

colour map

Enhance the smoothness
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Accuracy Improvement Techniques (2/2)

 Increase the zero-padding length when

using the fast Fourier transform so as to

increase the resolution in the frequency

domain

 Other techniques

 Circumferential averaging for axis-symmetric flame

 Using optical filters to make more use of the dynamic range of different 

colour channels (especially the blue)
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Sample data – ethylene co-flow laminar diffusion flame
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 Test Condition

 Fuel flow rate: 143 mL/min;

Air flow rate: 45 L/min

 Camera setup:

Frame rate: 60 frames/sec 

Aperture size: f/32 (with 2* convertor) 

Focus length: 100mm

Object to lens distance: 23.6 cm

Lens to detector distance: 17.4 cm

 Optical component

Lens: Nikon 50mm lens with 2* 

convertor

Filter: LEE E281 filter (around 0.4 

transmission efficiency for red and 

green light and 0.8 for blue light)
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Sample Data (1/4) – Hottel and Broughton
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Sample Data (2/4) – Rayleigh-Gans Theory
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Sample Data (3/4) – Rayleigh-Gans-Penndorf
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Sample Data (4/4) – Mie Scattering
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Assumptions (1/2)

 Particulate temperature is the same as local flame 

temperature

 Thermal radiation from other species are negligible 

compared to soot particles

 CO2: 2.0, 2.7, 4.3, 9.4, 10.4 and 15 µm

 H2O: 1.38, 1.87, 2.7, and 6.3 µm

 Chemilluminescence from radicals is negligible except from 

the circumferential base of the flame
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Assumptions (2/2)

 The radiation attenuation along the optical path 

is negligible (optical-thin approximation)

 Not clear at this point

 Can be partially corrected by using an iterative method suggested by 

Lu et al. (2009)

 Need to be corrected by introducing certain scattering models in the 

future

24



Conclusions

 The CBT-TCS technique is an effective and convenient optical
diagnostic method to measure the spatially distributed temperature,
soot diameters and soot volume fraction for an axi-symmetric flame

 The optical-thin assumption may need to be addressed in the future
to increase its accuracy

 CBT-TCS can be applied to asymmetric flames by using multiple
images
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