Gas-Phase Production of Core-Shell Nanoparticles by Decoupled Processes

Cambridge Particle Conference 13th May, 2011

Adam Boies Lecturer, Department of Engineering University of Cambridge

Motivation: Biofunctional Composite Nanoparticles

Review Paper: Melancon, M. P., W. Lu, et al. (2009). "Gold-Based magneto/Optical Nanostructures: Challenges for *In Vivo Applications in Cancer Diagnostics and Therapy.*" <u>MRS Bulletin</u> **34(June).**²

Nanotechnology Applications in Energy

- **Catalytic Treatment of Exhaust**
 - Reduction of CO in exhaust

Catalysts for proton exchange

Catalysts for direct methanol fuel

Production of H₂ for NO_x Treatment

Fig. 15.2 Mechanism of CO oxidation on supported fold catalysts, as proposed by Haruta et al. [16].

Zhong et. al, 2010 Nanotechnology

Fuel Production

membranes

Fuel Cells

cells

- Hydrogen from biomass
- Hydrogen from water
- Liquid fuels from biomass

Current synthesis techniques rely heavily on wet-chemistry methods.

Gas-Phase Synthesis Approach

Gold (or Silver) Nanoparticles Coated with Silica

Iron Oxide Nanoparticles Coated with Silica

Silica Nanoparticles Coated with Gold

Silica Coated Silver Synthesis Schematic Photoinduced Chemical Vapor Deposition (Photo-CVD)

Silica Coating of Silver Nanoparticles

Boies et al. (2009) Nanotechnology

Silica Coating Thickness on Silver Nanoparticles

Coating Chemistry

Energy-Dispersive X-Ray (EDX) Verification of Coating

Particles coated at 300°C

Polydisperse Ag particles produced at 10⁷ #/cm³

Particles processed at 400°C

Photo-CVD Coating

Diffusion Limited Growth Theory

Continuum Regime (*Kn*<0.1) $\rightarrow 1/D_{p}$ Growth

Free Molecule Regime (*Kn*>10) \rightarrow No Dependence

At Atmospheric Pressure, 20 nm \rightarrow Kn=6.5, 30 nm \rightarrow Kn=4.3, 40 nm \rightarrow Kn=3.3

 $Kn = 2\lambda/D_p$ Kn - Knudsen number λ - Mean free path

Hot-Wire Gold Particle Production Schematic

Gold Decoration of Silica

Particle size distribution of gold-decorated silica nanoparticles at different residence times

Boies et. al, 2010 J Aero Sci

Hot-Wire Evaporation Decoration: Densification of Coating

Densified Gold Decoration Collected after TDMA

High Density – Gold Islands Remain

Gold Mobility on Particle Surface at Elevated Temperature

Gold Mobility on Particle Surface at Elevated Temperature

At Low Temp

At 957 ° C

Tri-Layer Nanoparticle Synthesis

Core: Iron Oxide Production

Production rate ~mg/min

7 slm N₂ Purge Flow

Shell 3: Gold Decoration

Synthesized Composite Nanoparticles

Silica Coated Iron Oxide

Boies et. al, In Prep Nanotech

Platinum Decorated Silica

Boies et al., Not Published

Tri-Layer Gold, Silica, Iron Oxide

Boies et. al, In Prep Nano Let

Organic Coated Sodium Chloride

Zhang et. al, 2006 J Nanopart Res

Organic Coated Aluminum

He et. al, In Prep J Nanopart Res

Silver Decorated Silica

Future Directions

Homogenous Mixed Metals

Spark Discharge

discharge. Journal of Nanoparticle Research **2010, 11, 1209.**

Evaporation, Dissociation

Possible Morphologies

On-Line Testing of Catalytic Properties

Materials of Interest Gold Platinum Rubidium Iron Nickel Iron Oxide Titanium Oxide Carbon

Catalyst Decorated Nanoparticle Substrates

Acknowledgements

Funding Sources

- National Science Foundation Grant-0730184
- Nitto Denko Technical Corporations
- 3M Science and Technology Fellowship
- University of Minnesota Doctoral Dissertation
 Fellowship
- Institute of Technology Characterization Facility, a NSF-funded Materials Research

