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1.   Introduction
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Tier Date CO NOx HC+NOx PM PN*

Euro 4
Jan  
2005

0.50 0.25 0.30 0.025 -

Euro 5
Sept 
2009

0.50 0.18 0.23 0.005 6.0 x 1011

Euro 6
Jan 
2014

0.50 0.08 0.17 0.0045 6.0 x 1011

Development of legislations g/km

• Compared with Euro 4, Euro 5 confines the emissions further for carbon monoxide 
(CO), hydrocarbons (HC), oxides of nitrogen (NOx) and Particulates Matter (PM) and 

the latter two had a 28% and 80% reduction respectively.
• Particle number

*#/km

Regulations (EC) No 715/2007 of the European Parliament and the Council, "Emissions-Light Duty Vehicles", Jul, 2009.



Objective of the present study

Emission Reduction

10% Fuel Blends with Diesel
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2.   Experimental System



Test cell and the Ford Puma engine

Bore 86mm, 4 cylinders
Stroke 94.6mm

Compression Ratio 16.6

Engine Capacity 2198cc

Max Power 96KW (±5%)@3500rpm

Max Torque
310.0NM(±5%)@1600-
2500rpm

Injector type Common Rail, Direct 
Injection



Engine test rig layout
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Exhaust Measurement

Horiba MEXA 7100 DEGR

TSI SMPS 3936

AVL Smoke meter 415SG002



PROPERTY UNIT Diesel RME GTL Diesel
Ester content % (m/m) / 99.44 /
Density @ 15°C kg/m3 834.9 883.3 781
Viscosity @ 40°C mm2/s 2.87 4.441 3.1
Flash point °C 68.5 171.5 91
Sulphur content mg/kg 8.6 <3.0 <3.0
Carbon residue % (m/m) 0.13 <0.1 <0.3
Cetane number 51.1 51 77
Total contamination 
(particulate)

mg/kg 6.0
1.6 1.6

Lubricity μm 402 / 612
Distillation (Initial Boiling 
Point)

°C 181.3
/ 204

Aromatics %,m / / <0.1

Fuel properties



Engine Test Modes (A)

Mode
Engine Speed 

(rpm)
Torque 

(Nm)
Load (%)

EGR Valve 
Opening (%)

1 800 2.1 0.68 0

2 1800 30 9.68 30.91

3 1800 30 9.68 15.45

4 1800 30 9.68 0

5 1800 134 43.23 0

6 3100 35 11.29 18.18

7 3100 138 44.52 0

8 3100 230 74.19 0



Engine Test Modes (B)

Mode
Engine Speed 

(rpm)
Main SOI 
(BTDC)

BMEP 
(bar)

EGR

Idle 800 -1 0.68 NO

Middle Speed/Load 1800 -2.69 5.2 YES

High Speed/Load 2500 -2.69 7.0 NO

Pilot Injection
0 

(mm3/stroke)

1.5mm 
(mm3/stroke

)
3(mm3/stroke)

+5º CA

(a)

(b) (e)

Base (c) (f)
-5º CA (d) (g)



3.   Test Results  



A.    With 10% RME and GTL blends 



Particulate number and mean diameter
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Smoke
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•The trend of variation of 
smoke is not quite the same 
as the particle numbers



Non-volatile particles
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Engine Test Mode
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• The non-volatiles number reduction by the alternative fuel blends were 
all higher than the rates when thermo-dilution was not used
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Particulate Size Distribution at 800 rpm, Idle

• Bimodal mode
• A general reduction of 

particles in different 
sizes

• Small peak at 20nm 
when RME10 was used



10 100
102

103

104

Diameter (nm)

D
N

/D
Lo

gD
p(

P
ar

t./
cm

3 )

 DieselMode4
 DieselMode5
 RME10Mode4
 RME10Mode5
 GTL10Mode4
 GTL10Mode5

Particulate Size Distribution at 1800 rpm

• Mono-modal feature
• A general reduction of particles 

in different sizes
• The increase of load leads to 

less nucleation mode particles

30NM, No EGR

134NM, No EGR
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• Particles numbers reduced by 
RME10 or GTL10

• Larger particles with the 
increase of the load

Particulate Size Distribution at 3100rpm   

35NM, With EGR 138NM, No EGR

230NM, No EGR
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• More EGR, more nucleation 
particles 
• some nucleation particles around 
10 nm might be reduced

1800 RPM 

Particulate Size Distribution with different EGR
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Non-volatiles during Warming-up

(1) large amount of soot from 
incomplete combustion. 

(2)The mutated hydrocarbons 
during the combustion were 
likely to quench.

RME10



(a) Diesel magnification of 10000(b) Diesel magnification of 65000 (c) RME 10 magnification of 10000 
(d) RME magnification of 65000 (e) GTL10 magnification of 10000 (f) GTL10 magnification of 65000

Particle morphology (1800rpm, 30Nm)



Summary and conclusions (A)
• RME10 and GTL10 can lead to a similar reduction in total particle numbers 

under various engine conditions but their influences to the particle mean 
diameters are not clear

• RME10 and GTL10 reduce the accumulation mode particles and some 
nucleation particles in the larger size range (>30nm); however, RME 10 
could also increase those in the small size range under certain cases 
(<20nm). 

• Particles from diesel combustion have more clusters than those from the 
RME10 or GTL10 and the primary particle size of all the three fuels is around 
20-50 nm. 

• At 1800rpm, the increase of engine load results in an increase of particle 
mean diameter and the reduction of particle numbers (differently at 
3000rpm); the increase of either engine speed or EGR increases the particle 
numbers as well as the mean diameters  

• Cold starts could result in much higher non-volatile particles in the nucleation 
mode. 



B. Particles influenced by pilot injection



Effect of pilot injection
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Effects of pilot injection timing

• The advance of the pilot injection leads to a reduction 
of the particle numbers and mean diameters
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• In the absence of EGR, pilot injection seems to help reduce particle 
numbers, as in the idle and high speeds. When EGR is applied, as in medium 
speed/load, the introduction and increase of pilot injection quantities 
increases both the particle number and mean diameter.   

• The advanced timing of a higher radio of pilot injection tends to reduce the 
number and diameter of particles.  

• The strategy of pilot injection influences the PM emissions from the pilot 
combustion and at the same time the main combustion through ignition delay.   
This effect is less significant with the increase of the engine load and with the 
advance of the pilot injection timing.

• It is expected that when the strategy of pilot injection is used for NOx and 
NVH reduction as for biodiesel, attention will be required to minimise its 
impact on PM emissions.

Summary and conclusions (B)
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