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Renewable fuel research

* Ethanol / H, HCCI

« Ethanol / H Diesel

e Synthesis gas HCCI / PCCI / fumigation
« DME Diesel

« FAME, ULSD, and hydro-treated vegetable oil in
Caterpillar ACERT Diesel

« Cold flow filter plugging with FAME
e Butanol Diesel / Si
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HCCI

« Homogeneous charge compression ignition (HCCl)rexsgutilize a
combination of high compression ratio and premiltgghly dilute charge
to achieve low temperature premixed combustiondkiaids both soot
formation and significant NCformation but CO and hydrocarbon
emissions are high

» |t is difficult to utilize this type of combustioat high engine loads and it is
difficult to control the timing of the combustiomgeess.

 We explored three means of controlling the combuogiming and
measured the resulting gaseous and particle emsssio
— Intake air heating
— Exhaust gas recirculation

— Hydrogen injection - ethanol used was the primagt because it can easily be
reformed to make hydrogen

 Number and mass emissions of nanoparticles wetteeaddame order as
those from contemporary Diesel engines withoutreéiatment but the

particles were nearly all volatile
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Typical engine exhaust particle size distribution lg mass,
number and surface area
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Kittelson, D.B. 1998. “Engines and NanoparticlésReview,” J. Aerosol Sci., Vol. 29, No. 5/6, ¥5-588, 1998
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Carbonaceous agglomerates comprise most of the mdssm
Diesel engines but are largely eliminated by HCCI

Without Exhaust Aftertreatment
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Outline

* Experimental apparatus
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Experiment apparatus

PM Emissions Gas Phase Emissions
Instrumentation Instrumentation %
*CPC, SMPS EEPS *NO,, CO, HC, CO,, O, 2

Dilution System

— o3

The test engine is a modified 2005 E
model year Isuzu medium duty

engine. The base engineisa 5.3
liter, 4 cylinder engine, Dynamometer

turbocharged, aftercooled with
common rail fuel injection. E:EA
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Engine modifications for HCCI

e Turocharger and Thermal Management
aftercooler removed / System
« Common rail Diesel fuel
injection not used
. EGR Contro
* Primary fuel ethanol
preheated to improve
atomization

EGR Manifold
* Independent control of /
EGR, air temperature .
: ’ Intake Manifold
hydrogen, ethanol —
e Closed loop controlled L - | _Temperature Feedback
thermal system capable of — P
maintaining temperatures _— H, Injectors
of 150 °C
« MoTeC engine
management system used Main EGR Line H2 Fuel Rail
for fuel injector control
EtOH Injector EtOH Fuel Rall
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Particles were measured with a nano DMA and a 3025
ultrafine CPC configured to scan from 2 to 64 nm

MobeL 3085 Nano DMA
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A catalytic stripper was used to differentiate volale
and solid particles

Outlet

* Recent stripper design
— Stripper consists of a 2 substrate catalyst* fedld by a cooling coill
— The first substrate removes sulfur compounds
— The second substrate is an oxidizing catalyst

— Diffusion and thermophoretic losses present buitadefined
*Catalysts were provided by Johnson-Matthey

Kittelson, D. B.; Watts, W. F.; Savstrom, J. @hdson, J. P. Influence of catalytic stripper on
response of PAS and DQ. Aerosol Sci. 2005, 36, 1089-1107. Center for Diesel Research Iml
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Sampling and dilution system

Dilution ratios, primary = 18, secondary = 15

Residence time ~ 1.5 sec
Water
Chiller
Clean Heat Exch
Compressed Air eat Exchanger
MO Massflow | T Massflow
Controller Cool Controller
¢ Water ¢
o Transfer Line . :
& | Primary Residence Secondary Nano SMPS,
; A/ Dilutor Chamber Dilutor other instruments
2 \ Orifice
< Vents
~ Sampling
Probe
\/O Primary dilution Primary dilution Secondary dilution
air temperature, tunnel temperature air temperature, 25 C
25-45C 25-45C
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Dilution sensitivity
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The first thing we wanted to do was to establish
dilution conditions — dilution sensitivity
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The first thing we wanted to do was to establish
dilution conditions — dilution sensitivity
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DN/DLog Dp (Part./cm3)

Comparison with earlier Diesel dilution sensitivity
experiments
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Abdul-Khalek, 1., D.B. Kittelson, and F. Brear. 9® “The Influence of Dilution The sensitivity to dilution conditions is somewkess

Conditions on Diesel Exhaust Particle Size DistiitmuMeasurements,” SAE than we have observed with Diesel nanoparticles. We

Paper No. 1999-01-1142, 1999. decided to go with intermediate tunnel and dilut@am
temperatures, 35 and 35 C, respectively
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 Results
— Engine performance
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Variation of output with intake temperature for 3
fixed fueling rates, 1500 rpm
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Outline

— Variable intake temperature
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Ethanol HCCI with varying Intake Temperature,
A~4.5, 1500 RPM, No EGR
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Ethanol HCCI with varying Intake Temperature,
A~4.5, 1500 RPM, No EGR

6000 - 20
- 18
5000 - = CO :16
—A— HC -
. - 14
4000+ i
5 12
o &
L 3000 }10%
© - L
: -2
@) -8
O R L
2000 - i
| -6
i :4
1000 - C
i ‘\‘\F A A A 2
i - - T
O T T T 71T T 1T+ T+ 71T T T T+ T 71T T’ 1T 7T T 71 1" 1T T T T T T T \[:O
90 100 110 120 130 140 150 160

Intake Temperature (°C)

Center for Diesel Research Iﬂ

UNIVERSITY OF MINNESOTA



Ethanol HCCI with varying Intake Temperature,
A~3.75, 1500 RPM, No EGR

dN/dlogDs (particles/cnr)
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Ethanol HCCI with varying Intake Temperature,
A~3.75, 1500 RPM, No EGR
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Ethanol HCCI with varying Intake Temperature,
A~3.0, 1500 RPM, No EGR
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Ethanol HCCI with varying Intake Temperature,
A~3.0, 1500 RPM, No EGR
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Summary total number emissions
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Summary total estimated mass emissions — these are
at Diesel engine levels
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Outline

— Role of solid particles
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What about solid particles — here are some results
with and without the catalytic stripper at light load
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Solid particles from previous slide 10x scale
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Comparison with solid particles from a modern Diesk
HCCI nucleation mode particles much smaller but inhigher
concentration.
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Outline

— Preliminary hydrogen results
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Ethanol HCCI with varying fraction H , energy
iInput, A~4.5, 1500 rpm, T intake = 130° C
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Hydrogen HCCI with varying intake temperature,

A~5, 1500 rpm, 50 N-m
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Conclusions
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Conclusions

« Significant mass and number emissions observed

Most of material between 10 and 50 nm

Nearly all volatile

Some solid particles between 3 and 10 nm

Particle emissions do not correlate with HC anded@ssions
Significant particle formation even with pure tdel

» Lube oil must play an important role

* Need to consider detailed in cylinder temperatuséory and impact on lube related
particles

» Should explore other lube oil formulations andaddmization mechanisms

 This is a work in progress — data collection analysis continues

In-cylinder pressure measurements for heat reledss and IMEP
Variable EGR results

Additional hydrogen tests

This system could be test bed for lube oil gereraarticles with non sooting
systems, HCCI, DME, CNG, H
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Related work on HCCI particle emissions

Kaiser et al (2002)

Priceet al (2007)

Misztal et al (2009)

Zinola & Lavy (2009)

Engine DI, Intake heating, DI, 19 valve timings, Mixed hot/cold intake 2.2 liter, DI, CR=14:1,
CR=15.2:1, A=1 only, streams, variable valve | boost, cool/hot EGR
timing mixing

Fuel Gasoline Gasoline Gasoline low sulfur( <10ppm)
diesel, CN =56.1

Instrumentation | SMPS, 2 stage dilution | DMS500 DMS500 SMPS 3071A ,with 30272
CPC

Findings -Mid load HCClI yielded | -HCCI showed more -Increased EGR- -NO,:NOy =12-17%

more and larger accum.
mode PM than DISI
operation

accum. mode PM and
less nucl. mode PM thar
DISI

decreased total PM
-Lack of dilution
monitoring/control
reported

-VOF 75-90% for low
load HCCI

-no nucleation mode PM
present

-no dilution conditions
reported
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