

Particle Size Distribution Measurements from Early to Late Injection Timing Low Temperature Combustion

<u>Christopher Kolodziej</u>, Jesús Benajes, Ricardo Novella, Simon Arthozoul CMT – Motores Térmicos Universidad Politécnica de Valencia

Background

- Experimental Setup
- Combustion Results
- Particle Emissions Results
- Conclusions

- Premixed, Diesel Low Temperature Combustion (LTC) can greatly reduce NOx and particulate matter (PM) emissions
- HC and CO emissions optimization required
- PM emissions possible at minimum opacity-based detection limits through early or late injection timing

What are the differences between particle size distributions below opacity-based minimum detection limit?

> How does PM mass (opacitybased) and number correlate?

- Find a low PM, NOx, CO, and HC HD-Diesel engine operating regime with minimal intake pressure, EGR cooling, and EGR rate requirements
- Correlate emissions of particle sizes and numbers to calculated in-cylinder combustion values
- Provide LTC particle size and number emissions information to combustion as well as after-treatment researchers

10 nm

10 nm

- Background
- Experimental Setup
- Combustion Results
- Particle Emissions Results
- Conclusions

Research Engine	1.8L Single-Cylinder, 14.4:1 CR
Exhaust Dilution	Dekati FPS-4000, Heated Prim. and Ambient Sec. Dilution
Opacity-Based PM	AVL 415 Smokemeter
Particle Size Dist.	TSI SMPS 3936 (3080L Long DMA, CPC 3010)

Case		1	2
Intake O2	[%]	13.7	12.1
Exhaust T	[C]	305-340	295-325
Probe T	[C]	300	290
PDT Setpt.	[C]	300	
PDT	[C]	195-230	180-200
SDT	[C]	28	
TDR	[-]	40	40, 65

Intake O2 = Engine Intake Oxygen Concentration (Volumetric) Exhaust T = Exhaust Sample Point Temperature Probe T = Heated Diluter Sample Probe Temperature PDT Setpt. = Primary Dilution Temperature Heater Setpoint PDT = Actual Primary Dilution Temperature SDT = Secondary Dilution Temperature TDR = Total Dilution Ratio

Engine Operating Conditions

Case	1	2
Speed [RPM]	1200	
IMEP [bar]	~7	
m _{fuel} [mg/cycle]	70	
Inj. Command [°aTDC]	-27 →0	-33→-3
Mech. Inj. Delay [CAD]	1.53	
P _{injection} [bar]	1450	
Intake O2 [%_vol]	13.7	12.1
Equivalence Ratio [-]	0.75	0.83
T _{intake} [°C]	45	
P _{intake} [bar]	1.35	
T _{exhaust} [°C]	365-418	365-410
P _{exhaust} [bar]	1.45	

- Background
- Experimental Setup
- Combustion Results
- Particle Emissions Results
- Conclusions

- Background
- Experimental Setup
- Combustion Results

• Particle Emissions Results

Conclusions

Zone 1 Particle Size Distributions

Zone 2 Particle Size Distributions

Zone 3 Particle Size Distributions

- Background
- Experimental Setup
- Combustion Results
- Particle Emissions Results
- Conclusions

- Within Zone 1, PM mass and number emissions increased rapidly with advancing injection timing (due mostly to decreasing ignition delay)
- In Zone 2, PM mass and number emissions decreased with injection timing advance (due to increased ignition delay and 85% burned adiabatic flame temperature)
- Strong trade-off between accumulation and nucleation modes existed in Zone 2 (pivot point)

- Zone 3 showed increased PM mass and number in both accum. and nucl. modes with injection timing advance, but much greater nucleation mode increase than accumulation mode
- Since HC emissions also dramatically increased from -30°aTDC to -33°aTDC, spray-combustion chamber impingement is suspected as primary cause of increased PM
- Though minimum-PM injection timings had similar accumulation modes, later injection timings had higher nucleation modes, accompanied by higher HC emissions

- Spanish Ministry of Education
- Universidad Politécnica de Valencia
- Gabriel Alcantarilla
- Rogério Jorge Amorim
- Sara Goska

Thank You for Your Kind Attention Questions?

Christopher Kolodziej

<u>chko@mot.upv.es</u>