Application of multi-lognormal distribution for characterising in-cylinder and exhaust soot generated from diesel engines

Saumyabrata Banerjee, Barbara Menkiel , Lionel C Ganippa and Hua Zhao Centre for Advance Powertrains and Fuel Research School of Design and Engineering Brunel University Uxbridge, London UB8 3PH

Introduction

Diesel engines

- Higher efficiency;
- Less maintenance;
- Lower fuel consumption;
- Lower emission of carbon dioxide;

Disadvantages (main emission products)

- Nitrogen Oxide (NOx);
- Particulate Matter (PM);

Stringent vehicle emissions standards

- Soot mass reduction;
- Soot size distribution;
- Airborne and transported through the respiratory tract to the lungs
- Health hazards

Soot size distribution is an important information

In-cylinder and exhaust soot measurement techniques

Principle of Laser Induced Incandescence

Mono-dispersive soot size distribution

- Mono-dispersive soot size distribution r_{mono} results in a pure exponential decay of the theoretical LII signal.
- Experimental LII signal is the cumulative signal from particles of various sizes and the highest contribution comes from the primary-particle size r_{mono} .
- The smaller particles decay faster and therefore have a constantly decreasing influence on the total signal of the particle distribution, which results in a deviation of the LII signal from a pure exponential decay.

Single-lognormal soot size distribution

Single-lognormal soot size distribution

• This assumption yields a count median radius r_{cmd} and erases the contribution of mono-dispersive particle size r_{mono} that is primarily responsible for the temporal decay of the TR-LII signal.

Multi-lognormal soot particle size distribution for TR-LII

$$P(r_{i,cmd_multi}) = \sum_{i=1}^{n} \frac{1}{\sqrt{2\pi}r_{p}\sigma_{i}} \exp\left\{-\frac{\left[\ln(r_{p}) - \ln(r_{i,cmd_multi})\right]^{2}}{2\sigma_{i}^{2}}\right\}$$

• Owing to a significant increase in the number of variables for a multi-lognormal function, a simple approach of $\sigma_i = \sigma_2$ for all i > 2 was employed for the purpose of reduction of variables along with the following assumption for count median radius:

 $r_{i+1,cmd_multi} = \frac{r_{i,cmd_multi}}{\xi} \text{ where } \xi \text{ is the divisible factor.}$ • For fitting two conditions (a) $r_{1,cmd_multi} = r_{mono} = \frac{d_{mono}}{2}$ and (b) minimum χ^2 for the comparison of the LII signals

• ξ is a function of the total number of lognormal distribution *n*, unique values were obtained for ξ which is approximated by $\xi \cong 1 + \frac{2.5}{n^2 - 2.75}$ where $2 \le n \le 6$.

Theoretical reconstruction of soot size distribution

Experimental setup

Experimental Results

Experimental Soot size distribution

Validation of the multi-lognormal size distribution

Experimental results for Electrical Mobility Spectrometer (EMS)

Comparison of Published TEM data with proposed multi-lognormal size distribution

Conclusion

•In-cylinder TR-LII, Electrical mobility spectrometer (EMS) and Transmission electron microscopy (TEM) results show that the soot size distribution in engines is better represented by a multi-lognormal size distribution compared to a monodispersive or a single-lognormal size distribution.

• We speculate that a multi-lognormal particle size distribution with n>3 reconstructs a realistic soot size distribution instead of a single-lognormal distribution.

• The mono-dispersive size was preserved while reconstructing the particle size distribution assuming a multi-lognormal size distribution .

Thank You

