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Alternative Aviation Fuels
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Fuel blends tested and Data Types Acquired

Parr1TNER

Fuel ID | Alt. Fuel Base-Fuel Source Tested Fuel Amb Temp (F)
0 None Jet A GE Jet A 28
1 None Jet-Al GE Jet-Al 41
2 Ester Jet-Al Boeing 20% Ester / 80% Jet-Al 28
3 Ester Jet-Al Boeing 40% Ester / 60% Jet-Al 29
4 F-T Jet-Al Air Force, 50% F-T /50% Jet-Al 31

Gas emissions: CO, HCHO, Speciated HCs NO, NO,, NO,

PM emissions: Total conc, size distributions {Dp;, dN/dlogDp;}

Dgeom, DgeomM, Sigma, EIn, EIm Black carbon mass (MAAP)
Composition (AMS) Organic, Sulfate (Nitrate)

Size distribution of volatile component
**** No near field plume data



Measured Fuel Properties < e

MEASURED FUEL PROPERTIES
E Heat of Kinematic | Kinematic Lubricity- [ Thermal
© Specic | Combustion - Viscosity @| Viscosity @| Kinematic | BOCLE [Stability Test
it Gravity LHV LHV -20deg C | -20deg C |Viscosity @| wear scar |  @260C
FUEL @ 15C | (kJ/kg) Btu/lb | [(kJ/kg) Btull mm”2/s mmA~2/s 100F (mm) [(tube/delta P)
1 Jet-Al 0.797 | 43300 (18620) / (43523) 18715\ 4.2 4.27 1.31 N/A 110
21 20% Ester / 80% Jet-A1] 0.808 | 42000 (18060) | (41600) 17888 5.1 4.74 1.41 0.51 110
3| 40% Ester / 60% Jet-A1l] 0.825 | 40300 (17330) || (39633) 17042 n.a 5.62 1.55 0.53 110
4| 50% F-T/50% Jet-Al | 0.776 | 43600 (18750) | (43737) 18807 4.7 44 1.33 0.57 110
5 100% F-T 0.755 | 44100 (18960) \ (44126) 18974/ 4.7 4.65 1.36 O'g?”(_?f S 110
Fuel Spec 0.78-0.82| 42860 - 43500 \62860 : 435(% 25-65 | 25-65 v | <08 (el g s
w/o CI/LI)
M (G Air Force Air Force GE Air Force GE GE Air Force | Air Force
easUrement Sroup- |- AprL AFRL iatién AFRL | Aviation | Aviation | AFRL AFRL

Fuel flow is a surrogate for engine power setting
Fuel flow has to be corrected to account for different heats of combustion

Ester fuels are not expected to see commercial aviation use, but were tested as they were
readily available at the time of the engine test. Ongoing industry plans for use of bio-derived
jet fuels include the hydrotreating/hydrocracking of plant and other bio-derived oils. Properties
of such biojet fuels are expected to be similar to Fischer-Tropsch fuels. 7
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Normalized mass fuel flow (ppt
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Emissions Representativeness
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« Data from this test was compared to that from the same engine
type investigated during the JETS APEX2 campaign

Comparison between CFM 56-7B engines
(JET Al- Peebles and JETS APEX2)
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Summary -« e

« (Gaseous emissions performance:

— very similar to APEX
— Independent of fuel
— Perhaps small changes in NO/NO,/NO, for Ester

— Exception

— speciated HCs distinct for alternative fuels: especially aromatic HC
emissions
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Particulate Emissions
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Size and number calibrations for

DMS 15 and 21
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% Change in PM emission parameter =AasT~==

vs fuel flow for all fuels and blends studied
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Fuel blends tested and Data Types Acquired
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Fuel ID | Alt. Fuel Base-Fuel Source Tested Fuel Amb Temp (F)
0 None Jet A GE Jet A 28
1 None Jet-Al GE Jet-Al |41|
| —
2 Ester Jet-Al Boeing 20% Ester / 80% Jet-Al 28
3 Ester Jet-Al Boeing 40% Ester / 60% Jet-Al 29
4 F-T Jet-Al Air Force, 50% F-T /50% Jet-Al 31

PM emissions: Total conc, size distributions {Dp;, dN/dlogDp;}

Dgeom, DgeomM, Sigma, EIn, EIm Black carbon mass (MAAP)
Composition (AMS) Organic, Sulfate (Nitrate)
Size distribution of volatile component

Gas emissions: CO, HCHO, Speciated HCs NO, NO,, NO,
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Temperature Effect < e

« Measurements with Jet A1 were made at 41F; all other
measurements ~ 30F

 Are the differences in observed emissions characteristics due to fuel
change, temperature change or a combination of both?

Impact estimation

 Compare Jet A to Jet A1 measurements to estimate temperature
effects on emissions

Methods employed to address estimated temperature effects

* Increase % change confidence levels to account for possible shift in
reference Jet A1 emission characteristics due to temperature
change

 Treat Tshift as a T-correction for the reference Jet A1 data and
correct the Jet A1 reference data to the blend measurement
temperature.

16



Temp. correction —v- Temp. shift
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For ease of comparison, the data points for Tcorrection are
offset from those of Tshift
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Summary <
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There is a statistically significant reduction in the number and mass-
based emission index with all fuel blends — e.g. an average between 50-
60% for EIn.

For all blends, the greatest percent reduction is observed at low fuel
flow rates

100% FT fuel yields the lowest emissions (consistent with previous
studies — Corporan et al., 2007)

Black carbon reduced
Corresponding reductions in organic PM

Background sulfate (& nitrate) contribute to emissions at idle, but
sulfate contributions minimal at higher powers for engine exit plane, as
expected

Near-field plume data would shed more light on volatile PM emission
amounts

Alt. fuels and their blends show promise as candidates for PM
emission reduction particularly during low power operations thereby
justifying continued study of these and other candidate fuels.
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AAFEX —Alternative Aviation Fuels
Emissions Experiment
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AAFEX Plan AAFEX Objectives

1) Examine the effects of alternative fuels on the performance
@ Summafy of AAFEX Plan (temperatures, pressures, thrust, etc.) and primary emissions
-_-_-—— YN P P e NeeoeoSeySYe- (cel'ﬁﬂcaﬁon gaseS, HAPS’ black cal'bun) of a l-epl'esentaﬁve
Location: NASA DFRC/Palmdale Facility (near Skunkworks) commercial jet engine
Time: Mid January 2009 2) Investigate the effects of engine power, fuel composition, and ambient
conditions on volatile aerosol formation and growth in aging aircraft
Aircraft: DC-8, right inboard CFM-56 engine exhaust plumes
Fuels (6): :?l:'aa::t?rgﬁ;gs) L0750 3EA Blend 3) dEStam;Sh air(:rafft ?PU emjs::on characteristics and examine their
*FT (Coal) + 50/50 Jet A blend ependence on fuel composition
*Biofuel + 50/50 Jet A blend 4) Evaluate performance of new instruments
Runtime: ~5 hours per pure fuel, 2.5 hours per Blend 5) Compare particle number, size, and mass emission measurements
25 — 30 hours total made by separate groups to establish expected range of variation

Duration: 5 days setup, 10 days testing HEtpERIL N e

Daily Sched: 4 am - 2 pm (night/day tests for each pure fuel)

AAFEX Approach

eUse government owned commercial aircraft in order to gather data
set that is free of proprietary restrictions

eConduct experiment at outdoor facility where exhaust can be
sampled at multiple points downstream of the exit plane; simulate
airport conditions

eUse standard procedures for sampling/measuring gas-phase
emissions

*Work with engine manufacturer to replicate engine operating
conditions sampled during ICAO certification tests (i.e., idle, takeoff,
climb, and approach

eConduct duplicate experiments in early morning and at mid-day to
sample emissions across a broad range of ambient conditions
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