

John McAughey¹, Conor McGrath^{1,} Kingsley Reavell², Barrie Frost³, Colin Dailly², Tom Adam⁴, Ch. Mocker⁴ & Ralf Zimmermann⁴

¹British American Tobacco, Group R& D Centre, Southampton, UK ²Cambustion, Cambridge, UK ³Consultant, UK ⁴University of Augsburg (now University of Rostock)

john_mcaughey@bat.com

- Measurement challenges
 - Regulatory & product context
 - Aerosol
 - Chemistry
- Equipment design
 - Smoking profile measurement & replication
 - Electrical mobility spectrometry
 - 'Soft'-ionisation TOF mass spectrometry
- Results
 - Smoking profile compliance
 - Particle number, diameter and TPM mass
 - Chemistry
 - Density
- Conclusions & future work

Regulatory & product context

Regulatory context

Research Needs

- "The effect of aerosol particle size and distribution in combusted or heated tobacco products on sensory impact, degree and rate of absorption, toxicity, and dependence potential needs to be investigated."

The Scientific Basis of Tobacco Product Regulation.' WHO TobReg (2005) reinforced by WHO FCTC CoP3 (2008)

Product context

- Understanding the influence of cigarette design on particle size, smoke yield, intake and regional dose of smoke toxicants in humans and laboratory disease models
- Core understanding of dosimetry in the context of harm reduction

Measurement challenges

Aerosol

- 150 250 nm CMD
- GSD = 1.7
- 1 x 10¹¹ particles in 50 ml puff
- Coagulation in rod and filter
- Variable ageing time as tobacco rod is consumed
- Condensing vapour atmosphere

<u>Chemistry</u>

- Smoke generation by combination of combustion, pyrolysis and distillation
- 8089 chemicals in tobacco
- 7357 chemicals in smoke
 (Rodgman & Perfetti, 2009)
- Potential for free radical mediated chemistry (7 x10¹⁴ spins (esr) per 50 ml puff)
- Hydrophilic & hydrophobic mixture in droplet

Smoking behaviour measurement

Smoking behaviour

Puffing profile replication & aerosol measurement

Smoking Cycle Simulator & Fast Electrical Mobility Spectrometer

- Variable puff flow approx 0-100 ml.s⁻¹
- Dilution into constant total flow up to 30 100 I.min⁻¹
- Puff flow profile followed at 12.5 Hz
- Real time output of smoke flow, dilution flow & ratio
- DMS500 secondary dilution 3 : 1 300 : 1
- With DMS500, real time mass emissions rate output & diameter at 10 Hz

Puff compliance : SA7 Record

Upor Interface V2.05	Help				
COMS User Interface ¥2.05		Spectrometer	Spectrometer M32		
r Outer Sheath Flow In	Sample Flow			Dynamic	
r Inner Sheath Flow In	Charger HT			Range	
l/min 41.96 %pwm	30 - Smoker H112 D7 D0	- Sender _ H112 D7 D01 D150107105727 VED			
r Sheath Flow Out	Ro				
l/min 40.00 %pwm	Download s	ettings		50%-	
ier Sheath Flow In	Av		loro l		
l/min <u>60.39</u> %pwm	3. Play Hepeal	Count 1	Profile time (Secs) 8.56		
ier Pressure	Sp Repeat I	nterval 10.00 AO #1 Orifice flow	Puffs completed 3 out of 10	5%-	
Flow	Stop On l	nterval 5.04 AD #2 Dilution flow	Test running 🧔		
Umin 31.76 %pwm	TT Laibrate				
r Sheath Temp	- Non zero flo	w control	X	0.5%-	
°C 36.47 %pwm		Orifice F			
e Temp	15	0.00 100-		0.01%-	
°C 39.61 %pwm	1. C Zero	Orifice F		1000	
	To P Gain 15	0.00 -0.01 -0.01			
	14 Non zero I Gain -2	00.00 + Actuation = 40 -			
	c. "D Gain 0	.00 - 6035 20 -			
	flow	0			
	D-4.	-			
	Ma temperature		<u>.</u>		
	Measuremen	nts			
	NONONI NONONI	Orifice dp 226 Target volume (cc)	00.68		
	Barom	etric pressure 101428 Measured volume (cc)	11.03		
	Inle	t temperature 324 Volume error (cc)	1.35		
		Dilution flow 56 Calibration flow	6		
			0.001		
		Orifice C 226 Dilution ratio	0.001		
	😔 Diagnostics	1			
			Realtime clock in datafile		

Chemistry measurement

Experimental Set-up

Transfer line

DMS 500

SPI/REMPI-TOFMS

cigarette smoking machine

Soft Ionisation : SPI

Electron Impact Ionisation

- Typical ionisation potentials of organic compounds: 7-11 eV
- Conventional Electron Impact Ionisation uses ~ 70 eV
 - Large excess energy in ions
 - Fragmentation of ions

SPI = Single Photon Ionisation

- Ionisation by single VUV photon (118 nm / 10.49 eV)
- Small excess energy in ions
- Soft ionisation with almost no fragmentation
- Background gases such as N_2 , O_2 , and H_2O are not ionised

Concept of the LM2X–PhotoTOF smoke analyser

Data acquisition software

Aerosol data

Particle size measurement

Puff mass : DMS 500 volume vs Gravimetric - 1 mg & 4mg product at ISO

BRITISH AMERICAN TOBACCO

Particle diameter : ventilation & reproducibility

80

Filter Ventilation (%)

- 3 replicates x 3 smoking records

Subject	CMD (nm)	Particle No	Mass (mg)
		(x 10 ¹²)	
1	152.2 ± 4.1	3.02 ± 0.29	10.7 ± 0.7
3	157.5 ± 4.0	3.39 ± 0.17	12.7 ± 1.1
9	158.9 ± 5.9	2.17 ± 0.41	7.8 ± 1.4
12	161.8 ± 2.6	2.15 ± 0.22	8.2 ± 0.9
102	156.8 ± 5.1	4.11 ± 0.50	14.2 ± 1.5
105	174.4 ± 4.7	1.85 ± 0.19	9.2 ± 0.9
112	159.4 ± 3.9	2.69 ± 0.36	9.3 ± 1.0
Mean CoV	2.7%	11.3%	10.6%

Chemistry data

Mass spectra output

Outputs – mass spectrometry reproducibility

- Virginia cigarettes of 0, 35 and 70% ventilation smoked at 35 ml (STD) and 70 ml (INT) puffs of 2s duration every 60s
- Absolute yield values increase with increasing intensity and decreasing ventilation
- Precision typically < 5% (n=9)

Relative contribution of individual toxicant to mass of whole smoke (normalised ion count)

SPI – 1,3 butadiene

REMPI (240 nm) - benzene

REMPI (270 nm) - nicotine

Density measurement

Total mass (ELPI) vs total volume (DMS) variable : normalised data more consistent

Mobility versus aerodynamic diameter plot with slip factor correction to give density factor

Puff by puff gravimetric mass versus total aerosol 'mass' (DMS assuming unit density)

Effective density

Mass from ELPI gravimetric, volume from DMS 500

- Density = 1.87 g.cm^{-3} (Range = $0.9 4.3 \text{ g.cm}^{-3}$)
- Mass data poor precision at extremes
- Comparison of MMD & VMD (corrected by slip factor)
 - Density = 0.76 g.cm^{-3} (Range = $0.69 0.83 \text{ g.cm}^{-3}$)
 - Independent of smoking intensity, ventilation, tobacco type
- Puff by puff mass data
 - Density = 0.85 g.cm^{-3}
- Published data
 - Density = 1.12 g.cm^{-3} (Lipowicz, 1988)
 - Selected population of aged, > 1 μ m droplets
- Challenge of defined experiment for real-time mass

Conclusions & future work

- Tobacco smoke is a complex dynamic aerosol offering significant measurement challenges
- A smoking cycle simulator has been developed and integrated with a fast electrical mobility aerosol spectrometer for precise real-time aerosol data
- Soft-ionisation mass spectrometry has been used to measure precise real-time chemistry of key toxicant species
- Verification of smoke density is required for true realtime mass then regional deposition profiles in lung
- This set of tools supports a framework of harm reduction research by understanding dosimetry of key toxicants in smoke

www.bat-science.com we welcome your comments

