Towards a detailed soot model for internal combustion engines

S. Mosbach, M. S. Celnik, M. Kraft,

H. R. Zhang, S. Kubo, K.-O. Kim

16 May 2008

Engine model: SRM

Stochastic Reactor Model (SRM)

- Detailed chemical kinetics —
- Turbulent mixing
- Convective heat transfer

Chemical mechanism: PRF + small aromatics (extended by H. R. Zhang) 208 species, 1002 reactions

Computationally cheap (1-2 CPU-hrs/cycle)

PAHs in gas-phase chemistry

- Hongzhi R. Zhang
- Before: PRF+NOx, 157 species
- After: PRF+NOx+ variety of PAHs and highly unsaturated HCs, 208 species
- Validation against fuel-rich flame experiments

Sebastian Mosbach sm453@cam.ac.uk

Soot model: site-counting

Describe soot particles by 9+N dimensional state space (ARS-SC-PP model):

$$E = (C, H, S_{a}, N_{ed}, N_{zz}, N_{ac}, N_{bay}, N_{R5}, N_{PAH}, PP_{(1-N)})$$

PP = primary particle list

PAH reaction steps

Frenklach, Schuetz, Ping. Proc. Combust. Inst. 30, 2005

Sebastian Mosbach sm453@cam.ac.uk

Soot in engines!

Averaged soot quantities

Rates of soot processes

Aggregate size distributions (I)

Experiment

Simulation

Aggregate size distributions (II)

Experiment

Simulation

Aggregate size distributions (III)

Simulation

Role of EGR

Sampled aggregates (I)

Simulation

49.4 CAD ATDC, 129 primaries, coll. diam. 64 nm

Sebastian Mosbach sm453@cam.ac.uk

Sampled aggregates (II)

Experiment, sampled at ~16 CAD ATDC

Aggregate composition pdfs (I)

Aggregate composition pdfs (II)

Inception vs. condensation

large inception rate

large condensation rate

Future engine soot models (I)

- Partially stratified HCCI
- Partially premixed CIDI
- Conventional CIDI
- (Partially stratified) DISI

Future engine soot models (II)

Soot formation in a partially stratified HCCI engine:

Thank you!

Please visit our website:

Welcome!

Welcome to the website of the Computational Modelling Group! We develop and apply modern numerical methods to problems arising in Chemical Engineering. The overall aim is to shorten the development period from research bench to the industrial production stage by providing insight into the underlying physics and supporting the scale-up of processes to industrial level.

The group currently consists of 20 members from various backgrounds. We are keen to collaborate with people from both within industry and academia, so please get in touch if you think you have common interests.

The group's research divides naturally into two inter-related branches. The first of these is research into mathematical methods, which consists of the development of stochastic particle methods, computational fluid dynamics and quantum chemistry. The other branch consists of research into <u>applications</u>, using the methods we have developed in addition to well established techniques. The main application areas are reactive flow, combustion, engine modelling, extraction, nano particle synthesis and dynamics. This research is <u>sponsered</u> on various levels by the UK, EU, and industry.

M. K.t

Markus Kraft - Head of the CoMo Group

http://como.cheng.cam.ac.uk

