

On Board PM Mass Measurement for US and EU In Use Compliance

Cambridge Particle Meeting 16th May 2008

HORIBA

Explore the future

Introduction

HORIBA

- Concept of Vehicle On Board Measurement for "In Use Compliance" was introduced by EPA
 - Certification Requirement as consequence of the 1998 Consent Decree against the HDD Engine Manufacturers
 - Caterpillar, Cummins, Detroit Diesel, Volvo, Mack/Renault, Navistar
 - One of the provisions was the acceptance of SET (Supplemental Emissions Test : steady state) and NTE (Not To Exceed) limits of 1.25 times the FTP applicable mass emissions limits
 - Equipment generically known as PEMS (Portable Emissions Measurement Systems)
 - NTE testing to be measured as "Field Testing" under test procedures and equipment defined under 1065 regulations : subpart J
 - Gaseous systems specifications : now confirmed
 - Real Time PM mass measurement systems : under evaluation at present time to determine accuracy allowance against CVS principle
 - ✓ Currently auditing candidate systems performance with simulations
 - ✓ Engine testing phase to begin shortly ...

NTE (Not To Exceed) Zone

Automotive Test Systems

Explore the future

HORIBA

European Background

Directive for In Service Conformity

Legislative framework of inservice conformity

Directives 2005/55/EC, 2005/78/EC (Euro IV-V):

 correct operation of the emission control devices during the normal life of the vehicle under normal conditions of use is confirmed

 conformity of properly maintained and used in-service vehicles/engines is ensured

Euro VI proposal (COM(2007) 851 final):

 In order to better control actual in-use emissions including OCE and to facilitate the in-service conformity process, a testing methodology and performance requirements based on the use of portable emission measuring systems (PEMS) should be adopted.

2

HORIBA

Explore the future

European Background

Directive for In Service Conformity

HORIBA

Legislative framework of inservice conformity

ISC can be demonstrated by:

- 1. Presenting test data as measured on the test cycles
 - as required by Directives 2005/55/EC and 2005/78/EC
 - but: removal of engine is cumbersome, time consuming and costly
- Data obtained through the use of mobile measuring equipment fitted to vehicles
 - this method is considered as the most cost-effective one for ISC checking
 - measurement is easier to perform
- ⇒ A new PEMS-based ISC framework needs to be established, if possible for Euro V

Status of the EU PEMS Program

HORIBA

- EU PEMS gaseous study program successfully completed
 - Defined gaseous mass measurement procedures / calculations
- Moved to Pilot Program Stage for HDD On Road
 - Gaseous program in progress
 - PM program commencing in late 2008/9
- Pilot Program Participants
 - European Commission
 - General co-ordination: DG ENTR
 - Technical co-ordination: DG JRC
 - Member State authorities
 - Technical services
 - Vehicle and engine manufacturers
 - PEMS equipment manufacturers
 - Consultants (TNO, TUG, TÜV Nord etc)
- Application Of PEMS Equipment / Procedures for NRMM
 - Mainly agricultural machinery and construction equipment at present
 - Initial feedback from testing (may lead to modified procedures/specifications)

Explore the future

OBS-2200 : PEMS for Gases

EU Problem with NTE

HORIBA

Explore the future

EU Problem with NTE

HORIBA

Explore the future

© 2005 HORIBA, Ltd. All rights reserved.

HORIBA

Alternatives to US NTE

HORIBA

- EU JRC now reviewing the options for calculating, reporting and confirming Pass/Fail criteria
 - Modified NTE
 - Extending the "zone" to include lower speeds/loads
 - Decreasing the time window for valid data
 - Moving "work window" approach
 - All data is included but emissions are calculated and averaged over a window related to a defined amount of work, related to the maximum power of the vehicle
 - Criteria under consideration (maximum window time validity check)
 - Other calculation/reporting bases are being considered
 - For NRMM engines that do not have ECUs to indicate engine speed and torque/load then alternative pass / fail calculations must be considered

Alternatives to US NTE

HORIBA

EU JRC now reviewing the options for calculating, reporting and confirming Pass/Fail criteria

- Modified NTE
 - Extending the "zone" to include lower speeds/loads
 - Decreasing the time window for valid data
- Moving "work window" approach
 - All data is included but emissions are calculated and averaged over a window related to a defined amount of work, related to the maximum power of the vehicle
 - Criteria under consideration (maximum window time validity check)
- Other calculation/reporting bases are being considered
 - For NRMM engines that do not have ECUs to indicate engine speed and torque/load then alternative pass / fail calculations must be considered.

EU PEMS PM Program Status

HORIBA

List of candidate instruments

- HORIBA OBS-TRPM : Portable "Mini-Tunnel + DCS-100
 - Filter based PM mass measurement using portable proportional diluter combined with a real time particle indicator, sampling diluted exhaust
- SENSORS PPMD
 - using flow proportional exhaust dilution
 - multiple QCMs (quartz crystal microbalances with complex sampling / conditioning sequence)
 - Not a real time PM mass measurement (hence proportional flow diluter)
- DEKATI DMM-230
 - Using fixed ratio dilution (variable setting)
 - Real time measurement
- CONTROL SISTEM Portable "Mini-Tunnel + DEKATI ETAPS
 - Filter based PM mass emissions plus real time "in-situ" soot indicator
- AVL 483 Micro-Soot Sensor
 - Using fixed ratio exhaust gas diluter

EU PEMS PM Program Status

HORIBA

Laboratory Testing / Correlation Phase

- June/July 2008
- Comparison of candidate instruments with reference CVS system for PM Mass
 - No real time PM mass reference device
 - Particle number measurements also taken "for reference only"
- Decision on acceptable instrument / principles at end of laboratory correlation phase
- Field Testing Phase
 - October 2008 onwards
- EPA PM Mass Measurement Program
 - Continuous exchange on measurement methods and procedures
 - Alignment of requirements is anticipated

Explore the future

PM is a complex, variable mixture of several

components

Soot: Carbonaceous Solid (Combustion Generated)

SOF: Heavy HC condensed/absorbed on soot (Unburned fuel, Oil, Compounds formed during combustion)

SO₄: (Sulfur from the Fuel and Oil) combined with H2O

Nitrate : Formed as by-product from some exhaust after-treatments

Ash : solid particles formed from combustion of oil or additives in fuel

Explore the future HORIBA © 2005 HORIBA, Ltd. All rights reserved.

Soot is not enough ? Not for this vehicle, fuel, driving cycle etc

Explore the future

© 2005 HORIBA, Ltd. All rights reserved.

HORIBA

PEMS Real Time PM Mass Measurement

Technical Difficulties

HORIBA

- Accuracy / Correlation To Legislative Method
 - Specifically, correlation to the filter based gravimetric measurement principle that is used currently for all engine / vehicle certification . . And In Real Time
- Sensitivity
 - Requires higher sensitivity than filter gravimetric principle
 - Laboratory has whole test cycle for PM loading, real time can have as little as 30 seconds of PM mass loading
- Traceability
 - Calibration method
 - Traceability to a mass standard
- Repeatability / Reproducibility
 - Short term and long term drift potential
- PM Sensitivity to Fuel Composition, After-Treatment, Test Cycle, Ambient Conditions, Vehicle Pre-Conditioning/History etc
 - PM mass / composition can change with the above
- Rugged and Practical for On Board Use
 - Insensitive to vibration, ambient temperature change, altitude, ambient humidity
 - Size, power consumption, control signals etc

Explore the future

Combination of PFDS and Real Time

Basic Components for the HORIBA Combined System

HORIBA

- A partial flow diluter with filter for mass measurement (proportional dilution controlled by exhaust flow rate signal)
 - Dilution and PM sampling at 47 deg C, same as EPA 1065
 - Pitot tube flow meter and OBS-2200 providing exhaust flow signal for real time proportional dilution control
- A diffusion charge sensor (DCS) used as a real-time PM detector
 - OEM version of TSI EAD (Electrical Aerosol Detector)
 - Measure particle length in real-time
 - Wide size range : 10 1000nm
 - High sensitivity and wide dynamic range : 0.01 2500 mm/cm3
 - Response Time : < 3 secs
- Integrated DCS signal is calibrated against PM mass, post test, to provide a factor for real time PM mass indication

Explore the future

Schematic For OB-PFDS Module

Explore the future

© 2005 HORIBA, Ltd. All rights reserved.

HORIBA

Layout for the prototype PFDS

47mm Filter holder (47±5 degree C)

Heated Enclosure

0

Control Unit

Exhaust Flow Signal

(for proportional dilution control)

HORIBA

Explore the future

Dilution Ratio Verification

HORIBA

Dilution factor verified using high accuracy flow measurement of net sample flow rate under steady state conditions

Explore the future

Proportional Control for FTP cycle Using air flow + fuel flow data

Sample ratio: 4000:1

Standard Error

= 0.9988 (>0.95 ; ISO-16183)

Correlation Coefficient(*R*²) = 2.93% (<5.0%; ISO-16183)

Explore the future

HORIBA

Proportional Control for FTP cycle Using exhaust flow meter

HORIBA

Exhaust flow metering system accuracy / characteristics are important factor in the performance of PM Mass measurement

Explore the future

Test Engine Configuration @ SWRI

Test Engine Specification

Description	Specification
•Model Year Designation	•1998
•Engine Family	•DDC Series 60 •with CRT-DPF
•Power Rating	•400hp at 1810rpm
•Torque Rating	•1550 lb-ft at 1200rpm

CRT-DPF Bypass

Explore the future

Test Configuration @SWRI

PM Mass Emission Results

OBS-PM Filter v CVS Reference Method

Explore the future

HORIBA

HO

Combination of PFSS and EAD

Explore the future

HORIBA

Concept for NTE or real time PM mass

measurement procedures

HORIBA

Explore the future

HORIBA

Advantage

- Total PM measurement over NTE events same as conventional method.
- Filtering PM in NTE region (with 0 secs averaging) for more than 2 hours should typically load sufficient PM on the filter (depending on the road cycle)
- EAD has sensitivity for real time measurement of post 2007 PM standard.
- EAD measures all particles soot, sulfate, volatile particle etc from 10 – 1000 nm

HORIBA

Assumptions; Same size distribution, Same density

Minimizing factors

- By using filter gravimetric mass result as reference on each specific engine , this will eliminate assumption errors for engine family, after treatment strategy, etc.
- •By using EAD to gravimetric mass ratio, we will reduce the impact of different PM species on measurement.
- Method can be adapted for a variety of measurement models (NTE, Moving Work Window etc)
- Assumed Composition, Density or Size Distribution parameters are not used to calculate mass

Explore the future

Real Time Data : EU Stage 3 vehicle on Chassis HORIBA

Dynamometer

Real Time and Accumulated

particle diameter length v time

Accumulated particle diameter length v Gravimetric PM Mass

Explore the future

© 2005 HORIBA, Ltd. All rights reserved.

HORIBA

CE-CERT Trial Installation

Explore the future

Current Status : EPA PM Mass Measurement Allowance Program

Three systems supplied to SWRI

- Systems are undergoing preliminary evaluation
- Auditing, calibration, simulation
- Engine test phase to start in near future

Additional systems

- Under quotation to interested regulatory and technical authorities
- Participation in the EU PEMS-PM program

Explore the future

Thank you

Any questions ?

Explore the future