Particulate and Gaseous Emissions Measurements From a PFI-SI Engine with Oxygenate Fuel Blends

Ben Twiney

University of Oxford

Oxford University IC Engines Group

- Dr Richard Stone
- Philip Price
- Ben Twiney
- **Royal Dutch Shell**
- Dr Harold Walmsley

Outline

Background and Objectives

• Experimental facilities and instruments used.

• Test Matrix

- Results: PM and HC Emissions variation with fuel composition a different values of AFR, load, ignition.
- Summary & Conclusions.

Introduction

Looking into the effect of oxygenated fuels on PM and gaseous emissions.

Hypothesis

Blending Oxygenates with ULG significantly changes the fuels properties. This might affect emissions.

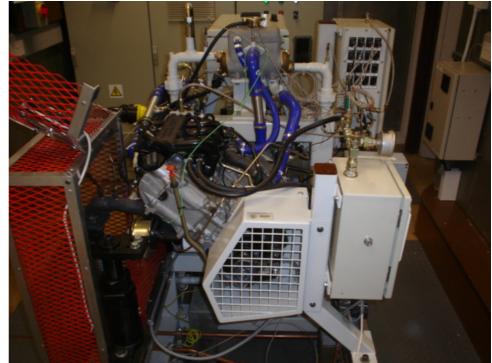
Fuel Blends ULG, M10, M30, E10, E30

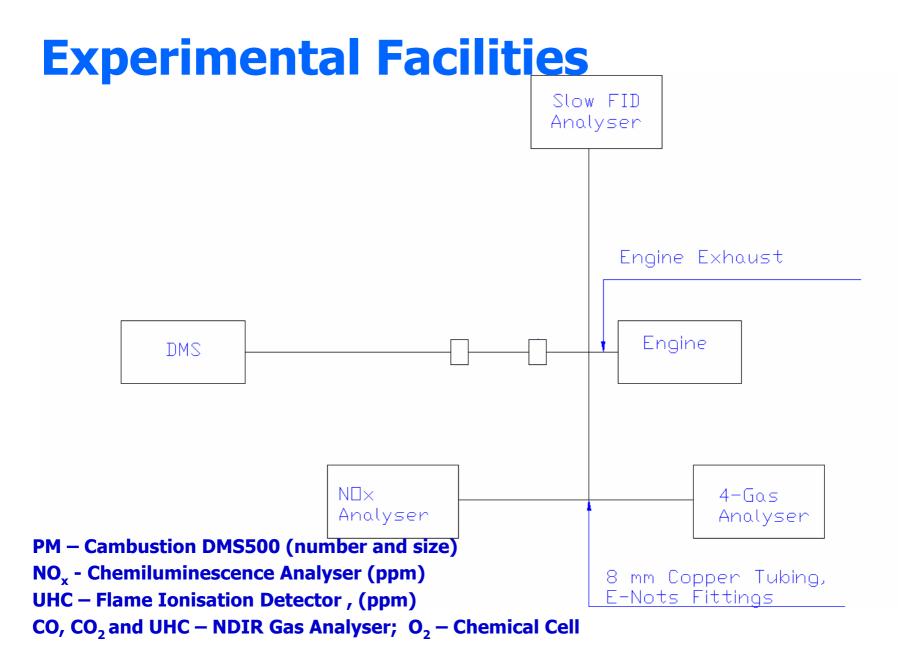
Background – Oxygenated fuel blends

	h _{fg} kJ/kg	CV MJ/kg fuel	Boiling point °C	RON	C/H	Adiabatic Flame Temperature °C
ULG	310	42	25 – 175	95	1.8	c2315
Methanol	1170	20	65	106	4	2243
Ethanol	850	26.9	78.5	107	3	2258

Shell Distillation Curves

- Adding oxygenates increases the percentage evaporation of the fuel blend
- 30% fuel blends significantly increase the percentage evaporation
- Due to decrease in enthalpy of vaporisation and an increase in the enthalpy of mixing

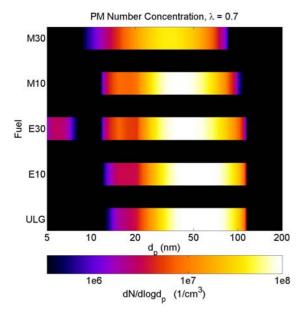


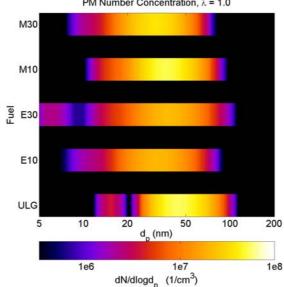

Calculated by Dr Harold Walmsley at Royal Dutch Shell using activity coefficient method

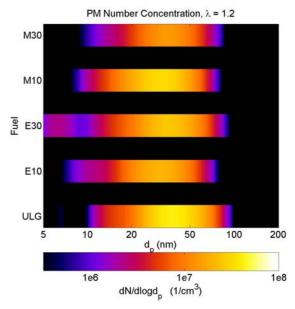
Experimental Facilities

PFI Spark Ignition in line 3 cylinder turbocharged Engine

- Bore x Stroke: 66.5mm * 67mm
- Compression Ratio: 9:1
- Swept Volume: 698 cm³

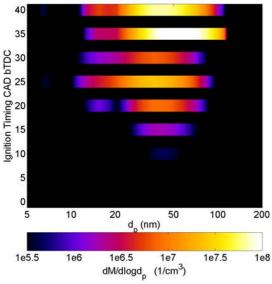


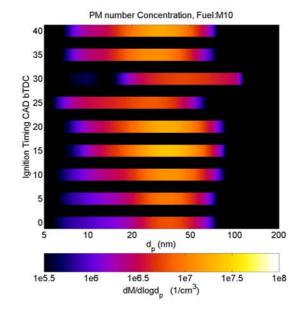


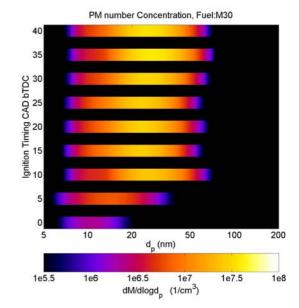

Test Matrix (All at 2000 rpm)

		ULG	M10	M30	E10	E30			
	λ 0.7								
		8.6% Throttle, 20 CAD bTDC							
AFR Sweep	•								
	•								
	λ 1.2								
	0								
Ignition Timing Sweep		8.6% Throttle, $\lambda = 1$							
	•								
(CAD bTDC)									
	40								
	400								
Load (MAP) Sweep		$\lambda = 1, MBT$							
(mbar)									
	1230								

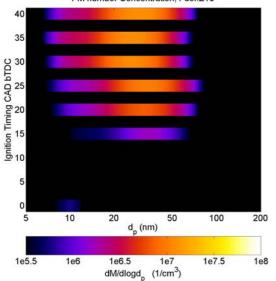
PM Results – AFR, MBT, c400 mbar

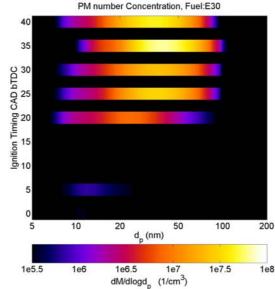


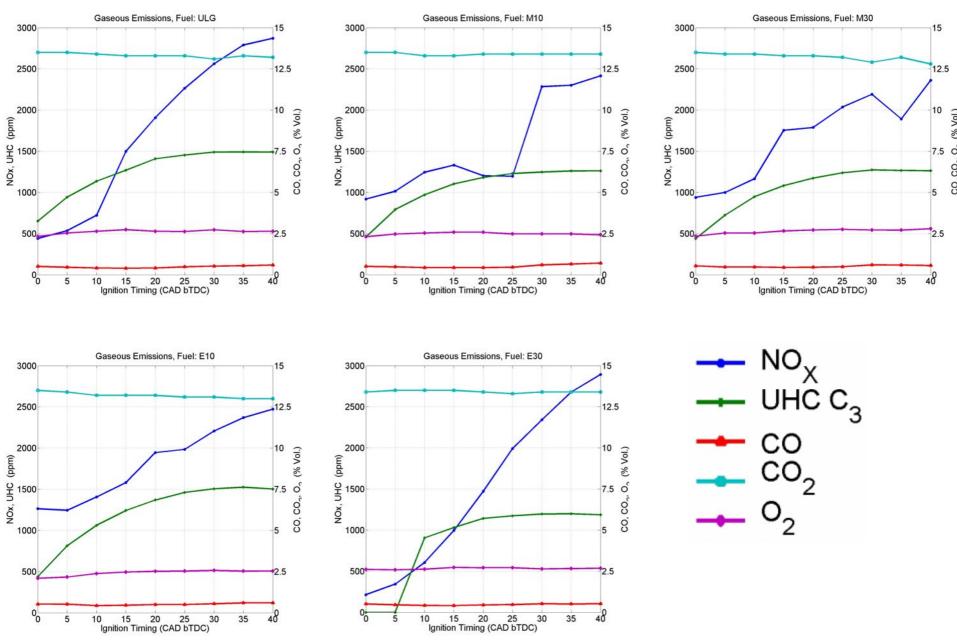



PM Number Concentration, $\lambda = 1.0$

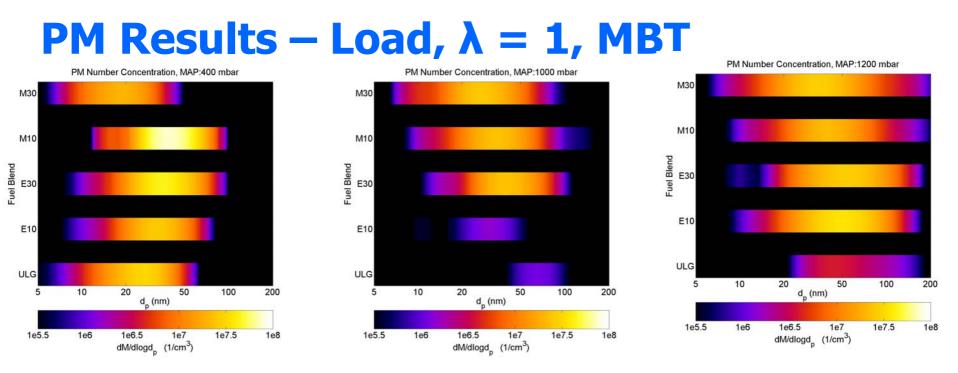
PM Results – Ignition Timing, $\lambda = 1$, c400 mbar


PM number Concentration, Fuel:ULG





PM number Concentration, Fuel:E10



Gaseous Results - Load

CO CO

•UHC Decrease with oxygenated fuel blends, shown at 400, 1000, 1200 mbar.

- •At Low Load, NO_x increases with oxygenated fuel blends.
- •At High Load, NOx, decreases with oxygenated fuel blends.

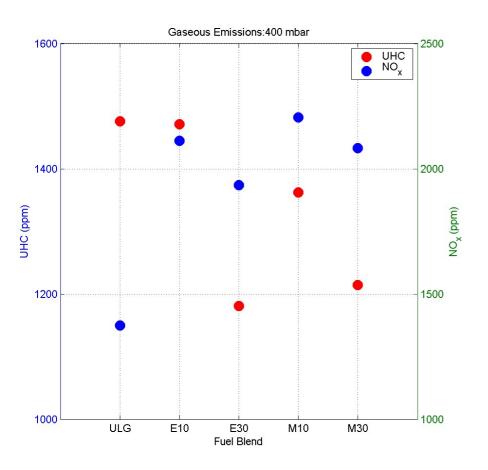
Conclusions - General

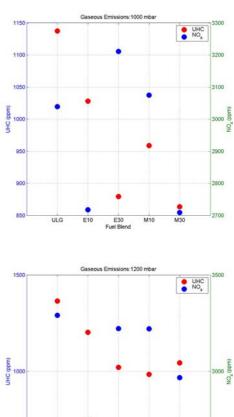
•AFR Sweep : Changing λ from rich to lean leads to a decrease in both the number concentration and d_{p_1}

•Ignition Timing Sweep: Advancing θ increases the number concentration and the NO_x this is due to an increase in the adiabatic flame temperature. UHC Increase due to a lower post flame temperature and hence less post flame oxidation

•Load Sweep: High Methanol blends beneficial at low loads. High loads oxygenated blends increase the geometric standard deviation.

Conclusions – Effects of Oxygenates


- Decrease in NO_x due to lower adiabatic flame temperature of alcohols
- Increase in UHC in comparison to ULG due to less post flame oxidation
- At MBT and retarded ignition timing methanol increases the PM number concentration and diameter. Ethanol is less sensitive
- Operating at rich conditions oxygenates lead to a reduction in PM and d_p



02/03/2006

- Particle diameter d_p is reduced but the concentration is increased when using methanol blends,
- Methanol blends have increased particle number concentration when the ignition was advaded.
- When operating rich, oxygenated blends reduce both the number concentration and the mean diameter.
- When operating at lean both the particle diameter and the number concentration are lower than at rich

- High Methanol blends have beneficial effects at low load
- At high load methanol blends increase the geometric standard deviation
- Oxygenated blends decrease the concentration of NO_x, this is due to the lower adiabatic flame temperature.

500

ULG

E10

E30 Fuel Blend

M10

M30

2500